MAPPING CLASS GROUP REPRESENTATIONS
AND SEWING CONSTRAINTS
IN CONFORMAL FIELD THEORY
Plan

Mapping classes and sewing constraints

Topics:

- CFT: Conformal blocks and correlators
- An algebra classifying CFT boundary conditions
- Sub-bundles of conformal blocks
CFT: Blocks and correlators

The classifying algebra

Sub-bundles

Outlook
R CFT: Two-dimensional rational conformal quantum field theory

Central object of interest: *Correlators*

\[\text{Cor}(Y) : \mathcal{M}_Y \times \mathcal{H} \rightarrow \mathbb{C} \quad \text{multilinear in} \quad \mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \]
Correlators and conformal blocks

Central object of interest: Correlators

\[\text{Cor}(\mathcal{Y}) : \mathcal{M}_Y \times \mathcal{H} \rightarrow \mathbb{C} \quad \text{multilinear in } \mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \]

\[\mathcal{H}_\ell = \begin{cases}
\text{space of boundary fields} \\
\quad \text{– representation space of } \mathcal{V} \\
\text{space of bulk fields} \\
\quad \text{– representation space of } \mathcal{V} \otimes \mathcal{V}
\end{cases} \]

\[\mathcal{V} : \text{conformal vertex algebra ('chiral algebra')} \]

Example: \(\mathcal{V}_{g,k} \) for f.d. simple Lie algebra \(g \) and level \(k \)

\(\text{R CFT} \): Two-dimensional rational conformal quantum field theory
Correlators and conformal blocks

Central object of interest: *Correlators*

\[\text{Cor}(Y) : \mathcal{M}_Y \times \tilde{\mathcal{H}} \rightarrow \mathbb{C} \]

multilinear in \(\tilde{\mathcal{H}} = \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \)

- space of *boundary fields*
 - representation space of \(\mathcal{V} \)
- space of *bulk fields*
 - representation space of \(\mathcal{V} \oplus \mathcal{V} \)

R CFT: Two-dimensional rational conformal quantum field theory

- **world sheet** \(Y \equiv (Y, \bar{\tau}, \bar{p}, ...) \)
- \(\bar{\tau} \) moduli of conformal structure on \(Y \)
- \(\bar{p} = p_1, p_2, \ldots, p_m \) insertion points
Correlators and conformal blocks
Mapping classes and sewing constraints

\[\text{R CFT : Two-dimensional rational conformal quantum field theory} \]

Central object of interest: Correlators

\[\text{Cor}(Y) : \mathcal{M}_Y \times \vec{\mathcal{H}} \to \mathbb{C} \quad \text{multilinear in} \quad \vec{\mathcal{H}} = \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \]

determined by two types of consistency conditions:

- **Ward identities**:
 Compatibility with chiral symmetries (action of \(\mathcal{V} \) on \(\vec{\mathcal{H}} \))
 \(\sim \) spaces of conformal blocks

- **Sewing constraints**:
 Compatibility of correlators on different world sheets related by “cutting and gluing”
 \(\sim \) specific elements in spaces of conformal blocks
Correlators and conformal blocks

Central object of interest: Correlators

\[\text{Cor}(Y) : \mathcal{M}_Y \times \mathcal{H} \rightarrow \mathbb{C} \quad \text{multilinear in } \mathcal{H} = \mathcal{H}_1 \times \mathcal{H}_2 \times \cdots \times \mathcal{H}_m \]

determined by two types of consistency conditions:

- **Ward identities**: Compatibility with chiral symmetries (action of \(\mathcal{V} \) on \(\mathcal{H} \))
 - solutions for fixed \(p \in \mathcal{M}_Y \) form vector space \(B_Y \) of conformal blocks
 - fit into vector bundle over Teichmüller space of oriented double \(\hat{Y} \) of \(Y \)
 - projectively flat Knizhnik-Zamolodchikov connection \(\omega^{KnZ} \)
 - \(\Rightarrow \) monodromy representation of \(\pi_1(\mathcal{M}_Y) \)
 - \(\Rightarrow \) action of mapping class group \(\text{Map}(\hat{Y}) \supset \text{Map}_{or}(Y) \)
Example: WZW conformal field theory

- Input data: finite-dimensional simple \mathbb{C}-Lie algebra g and level $k \in \mathbb{C}$
- \mathcal{H}_λ irreducible highest weight module of level k over untwisted affine Lie algebra \widehat{g}
- λ dominant integral g-weight with $(\theta, \lambda) \leq k$
- Lie algebra $\widetilde{g} = g \otimes \mathcal{F}(\widehat{Y} \setminus \widehat{p}) \subset \widehat{g}^m$ acts on $\mathcal{H}_{\widehat{X}} = \mathcal{H}_{\lambda_1} \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_2} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_m}$
 $\mathcal{F} \ni f$ holomorphic on $\widehat{Y} \setminus \widehat{p}$ and finite order poles at \widehat{p}
- Conformal blocks = \widetilde{g}-coinvariants of $\mathcal{H}_{\widehat{X}}$ [Tsuchiya-Ueno-Yamada 1989] [Looijenga 2005]
WZW conformal blocks

Example: WZW conformal field theory

- Input data: finite-dimensional simple \mathbb{C}-Lie algebra g and level $k \in \mathbb{C}$
- \mathcal{H}_λ irreducible highest weight module of level k over untwisted affine Lie algebra
- \widehat{g}
 - λ dominant integral g-weight with $(\theta, \lambda) \leq k$
- Lie algebra $\widetilde{g} = g \otimes \mathcal{F}(\hat{\mathcal{Y}} \setminus \hat{p}) \subset \widehat{g}^m$ acts on $\mathcal{H}_{\widehat{X}} = \mathcal{H}_{\lambda_1} \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_2} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_m}$
- $\mathcal{F} \ni f$ holomorphic on $\hat{\mathcal{Y}} \setminus \hat{p}$ and finite order poles at \hat{p}
- Conformal blocks $= \widetilde{g}$-coinvariants of $\mathcal{H}_{\widehat{X}}$

Special case: $g = \mathfrak{sl}_r(\mathbb{C})$

\implies blocks canonically isomorphic to dual space of sections $H^0(SU_{\hat{\mathcal{Y}}}; \Theta^k)$

- $SU_{\hat{\mathcal{Y}}}$ moduli space of semistable rank-r vector bundles on $\hat{\mathcal{Y}}$ with trivial determinant
- Θ determinant line bundle

("generalized theta functions of level k")

Example: WZW conformal field theory

- **Input data**: finite-dimensional simple \(\mathbb{C} \)-Lie algebra \(g \) and level \(k \in \mathbb{C} \)
- \(\mathcal{H}_\lambda \) irreducible highest weight module of level \(k \) over untwisted affine Lie algebra \(\hat{g} \)
- \(\lambda \) dominant integral \(g \)-weight with \((\theta, \lambda) \leq k \)
- Lie algebra \(\hat{g} = g \otimes \mathcal{F}(\hat{Y}\backslash \hat{p}) \subset \hat{g}^m \) acts on \(\mathcal{H}_{\vec{\lambda}} = \mathcal{H}_{\lambda_1} \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_2} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_m} \)
- \(\mathcal{F} \ni f \) holomorphic on \(\hat{Y}\backslash \hat{p} \) and finite order poles at \(\hat{p} \)
- Conformal blocks \(= \hat{g} \)-coinvariants of \(\mathcal{H}_{\vec{\lambda}} \)
- Data \(g, k \) \(\rightsquigarrow \) conformal vertex algebra \(\mathcal{V}_{g,k} \) \(\rightsquigarrow \) representation category \(\text{Rep}(\mathcal{V}_{g,k}) \)
 - objects = \(\hat{g} \)-modules of level \(k \), morphisms = \(\hat{g} \)-intertwiners
 - fusion tensor product \(\otimes \) preserving the level
 - \(\rightsquigarrow \text{Rep}(\mathcal{V}_{g,k}) \) braided tensor category
Sewing constraints

Mapping classes and sewing constraints

- **Sewing constraints**
 include *modular invariance*: \(B_Y \ni \text{Cor}(Y) \) invariant under action of \(\text{Map}_{\text{or}}(Y) \)

- For solving the sewing constraints (and for other purposes) *combinatorial* information sufficient:
 - regard \(\hat{Y} \) (irreducible smooth projective complex curve) as topological surface
 - encode symmetries in rep category \(\mathcal{C} \simeq \text{Rep}(\mathcal{V}) \) as abstract category
 - recall: \(\text{Cor}(Y) \in B_Y \)
 - regard \(B_Y \) as abstract vector space
 - identify \(B_Y \) with state space \(\text{tft}_C(\hat{Y}) \)
Sewing constraints

Sewing constraints include modular invariance: \(B_Y \ni \text{Cor}(Y) \) invariant under action of \(\text{Map}_{\text{or}}(Y) \)

For solving the sewing constraints (and for other purposes) combinatorial information sufficient:

- regard \(\hat{Y} \) (irreducible smooth projective complex curve) as topological surface
- encode symmetries in rep category \(\mathcal{C} \simeq \text{Rep}(\mathcal{V}) \) as abstract category
- recall: \(\text{Cor}(Y) \in B_Y \)
- regard \(B_Y \) as abstract vector space
- identify \(B_Y \) with state space \(\text{tft}_\mathcal{C}(\hat{Y}) \)

at least for rational CFT (\(\mathcal{C} \) modular tensor category) – assumed from now on –

Example: \(\mathcal{V}_{g,k} \) with \(k \in \mathbb{Z}_{k>0} \)
Example: WZW conformal field theory

- Input data: finite-dimensional simple \mathbb{C}-Lie algebra \mathfrak{g} and level k
- \mathcal{H}_λ irreducible highest weight module of level k over untwisted affine Lie algebra $\widehat{\mathfrak{g}}$
- λ dominant integral \mathfrak{g}-weight with $(\theta, \lambda) \leq k$
- Lie algebra $\widehat{\mathfrak{g}} = \mathfrak{g} \otimes \mathcal{F}(\hat{\mathcal{Y}} \setminus \hat{\mathcal{p}}) \subset \widehat{\mathfrak{g}}^m$ acts on $\mathcal{H}_\lambda = \mathcal{H}_{\lambda_1} \otimes \mathbb{C} \mathcal{H}_{\lambda_2} \otimes \mathbb{C} \cdots \otimes \mathbb{C} \mathcal{H}_{\lambda_m}$
- $\mathcal{F} \ni f$ holomorphic on $\hat{\mathcal{Y}} \setminus \hat{\mathcal{p}}$ and finite order poles at $\hat{\mathcal{p}}$
- Conformal blocks $= \widehat{\mathfrak{g}}$-coinvariants of \mathcal{H}_λ
- Data $\mathfrak{g}, k \rightsquigarrow$ conformal vertex algebra $\mathcal{V}_{\mathfrak{g}, k} \rightsquigarrow$ representation category $\mathcal{R}ep(\mathcal{V}_{\mathfrak{g}, k})$
 - objects $= \widehat{\mathfrak{g}}$-modules of level k, morphisms $= \widehat{\mathfrak{g}}$-intertwiners
 - fusion tensor product \otimes preserving the level
Example: WZW conformal field theory

- **Input data**: finite-dimensional simple \(\mathbb{C} \)-Lie algebra \(g \) and level \(k \)
- \(\mathcal{H}_\lambda \) irreducible highest weight module of level \(k \) over untwisted affine Lie algebra \(\widehat{g} \)
- \(\lambda \) dominant integral \(g \)-weight with \((\theta, \lambda) \leq k \)
- Lie algebra \(\widehat{g} = g \otimes \mathcal{F}(\hat{Y}\setminus \hat{p}) \subset \widehat{g}^m \) acts on \(\mathcal{H}_\chi = \mathcal{H}_{\lambda_1} \otimes_C \mathcal{H}_{\lambda_2} \otimes_C \cdots \otimes_C \mathcal{H}_{\lambda_m} \)
- \(\mathcal{F} \ni f \) holomorphic on \(\hat{Y}\setminus \hat{p} \) and finite order poles at \(\hat{p} \)
- Conformal blocks = \(\widehat{g} \)-coinvariants of \(\mathcal{H}_\chi \)

Data \(g, k \) \(\mapsto \) conformal vertex algebra \(\mathcal{V}_{g,k} \) \(\mapsto \) representation category \(\text{Rep}(\mathcal{V}_{g,k}) \)

- objects = \(\widehat{g} \)-modules of level \(k \), morphisms = \(\widehat{g} \)-intertwiners
- fusion tensor product \(\otimes \) preserving the level
- \(k \in \mathbb{Z}_{k>0} \Rightarrow \text{Rep}(\mathcal{V}_{g,k}) \) is modular tensor category
 (semisimple ribbon noetherian \ldots with nondegenerate braiding)
Example: WZW conformal field theory

- Input data: finite-dimensional simple \(\mathbb{C}\)-Lie algebra \(\mathfrak{g}\) and level \(k\)
- \(\mathcal{H}_\lambda\) irreducible highest weight module of level \(k\) over untwisted affine Lie algebra \(\widehat{\mathfrak{g}}\)
- \(\lambda\) dominant integral \(\mathfrak{g}\)-weight with \(\langle \theta, \lambda \rangle \leq k\)
- Lie algebra \(\widetilde{\mathfrak{g}} = \mathfrak{g} \otimes \mathcal{F}(\hat{Y} \setminus \hat{p}) \subset \widehat{\mathfrak{g}}^m\) acts on \(\mathcal{H}_\lambda = \mathcal{H}_{\lambda_1} \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_2} \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} \mathcal{H}_{\lambda_m}\)
- \(\mathcal{F} \ni f\) holomorphic on \(\hat{Y} \setminus \hat{p}\) and finite order poles at \(\hat{p}\)
- Conformal blocks = \(\widetilde{\mathfrak{g}}\)-coinvariants of \(\mathcal{H}_\lambda\)

- Data \(\mathfrak{g}, k\) \(\rightsquigarrow\) conformal vertex algebra \(\mathcal{V}_{\mathfrak{g},k}\) \(\rightsquigarrow\) representation category \(\text{Rep}(\mathcal{V}_{\mathfrak{g},k})\)
 - objects = \(\widehat{\mathfrak{g}}\)-modules of level \(k\), morphisms = \(\widehat{\mathfrak{g}}\)-intertwiners
 - fusion tensor product \(\otimes\) preserving the level
 - \(k \in \mathbb{Z}_{k > 0}\) \(\implies\) \(\text{Rep}(\mathcal{V}_{\mathfrak{g},k})\) is modular tensor category
 (semisimple ribbon noetherian \(\ldots\) with nondegenerate braiding)
 - \(\text{RCFT}\) constitutes generalization to \(\text{Rep}(\mathcal{V})\) for any rational vertex algebra \(\mathcal{V}\)
Sewing constraints (again)

- Sewing constraints include modular invariance: \(B_Y \ni \text{Cor}(Y) \) invariant under action of \(\text{Map}_{\text{or}}(Y) \).

- For solving the sewing constraints (and for other purposes) combinatorial information sufficient:
 - regard \(\hat{Y} \) (irreducible smooth projective complex curve) as topological surface
 - encode symmetries in rep category \(C \simeq \text{Rep}(\mathcal{V}) \) as abstract category
 - recall: \(\text{Cor}(Y) \in B_Y \)
 - regard \(B_Y \) as abstract vector space
 - identify \(B_Y \) with state space \(\text{tft}_C(\hat{Y}) \)
Sewing constraints (again)

Sewing constraints

include modular invariance: \(B_Y \ni Cor(Y) \) invariant under action of \(\text{Map}_{or}(Y) \)

For solving the sewing constraints (and for other purposes) combinatorial information sufficient:

- regard \(\hat{Y} \) (irreducible smooth projective complex curve) as topological surface
- encode symmetries in rep category \(C \simeq \text{Rep}(\mathcal{V}) \) as abstract category
- recall: \(Cor(Y) \in B_Y \)
- regard \(B_Y \) as abstract vector space
- identify \(B_Y \) with state space \(\text{ft}_C(\hat{Y}) \)

Actual solution (infinitely many nonlinear equations in infinitely many variables):

- Traditional approach: Find general solution to a specific small set of constraints
e.g. modular invariance of torus partition function
Sewing constraints

Sewing constraints include **modular invariance**: \(B_Y \ni Cor(Y) \) invariant under action of \(\text{Map}_{\text{or}}(Y) \)

For solving the sewing constraints (and for other purposes) **combinatorial** information sufficient:

- regard \(\widehat{Y} \) (irreducible smooth projective complex curve) as topological surface
- encode symmetries in rep category \(C \simeq \text{Rep}(V) \) as abstract category
- recall: \(Cor(Y) \in B_Y \)
- regard \(B_Y \) as abstract vector space
- identify \(B_Y \) with state space \(tft_C(\widehat{Y}) \)

- More recent: **TFT construction**: \(Cor(Y) \) for any \(Y \) as element of \(tft_C(\partial M_Y) \):

\[
Cor(Y) = tft_C(M_Y) 1
\]
Sewing constraints (again)

Sewing constraints
include *modular invariance*: \(B_Y \ni \text{Cor}(Y) \) invariant under action of \(\text{Map}_\text{or}(Y) \)

For solving the sewing constraints (and for other purposes) *combinatorial* information sufficient:

- regard \(\breve{Y} \) (irreducible smooth projective complex curve) as topological surface
- encode symmetries in rep category \(C \simeq \text{Rep}(\mathcal{V}) \) as abstract category
- recall: \(\text{Cor}(Y) \in B_Y \)
- regard \(B_Y \) as abstract vector space
- identify \(B_Y \) with state space \(\text{tft}_C(\breve{Y}) \)

- More recent: **TFT construction**: \(\text{Cor}(Y) \) for any \(Y \) as element of \(\text{tft}_C(\partial M_Y) \):

\[
\text{Cor}(Y) = \text{tft}_C(M_Y)1
\]

Giving one particular solution to *all* constraints
Sewing constraints (again)

Sewing constraints include modular invariance: \(B_Y \ni Cor(Y) \) invariant under action of \(Map_{or}(Y) \).

For solving the sewing constraints (and for other purposes) combinatorial information sufficient:

- regard \(\hat{Y} \) (irreducible smooth projective complex curve) as topological surface
- encode symmetries in rep category \(C \simeq Rep(\mathcal{V}) \) as abstract category
- recall: \(Cor(Y) \in B_Y \)
- regard \(B_Y \) as abstract vector space
- identify \(B_Y \) with state space \(tft_c(\hat{Y}) \)

More recent: TFT construction: \(Cor(Y) \) for any \(Y \) as element of \(tft_c(\partial M_Y) \):

\[
Cor(Y) = tft_c(M_Y)1
\]

1 \(\in C = tft_c(\emptyset) \)

connecting 3-manifold \(\emptyset \rightarrow M_Y \rightarrow \hat{Y} \)
3-d TFT

- Modular tensor category $\mathcal{C} \rightsquigarrow \mathcal{C}$-decorated 3-d TFT
 - Projective monoidal functor $\text{tft}_{\mathcal{C}}$\footnote{Reshetikhin-Turaev 1991}:
 $\text{Cob}_{\mathcal{C}}$ (\(\mathcal{C}\)-decorated cobordisms) $\rightarrow \mathcal{V}ect_{\mathcal{C}}$ (\(\mathcal{C}\)-vector spaces)
 - extended surface $E \mapsto$ vector space $\text{tft}_{\mathcal{C}}(E)$
 - cobordism $\mathcal{M} : E \rightarrow E'$ \mapsto linear map $\text{tft}_{\mathcal{C}}(\mathcal{M}) : \text{tft}_{\mathcal{C}}(E) \rightarrow \text{tft}_{\mathcal{C}}(E')$
 - Furnishes representation of the mapping class group of E

- Example: $\text{tft}_{\mathcal{C}}(\emptyset) = \mathcal{C}$ $\text{tft}_{\mathcal{C}}(\emptyset \xrightarrow{\mathcal{M}_Y} \partial \mathcal{M}_Y) \mathcal{C} = \text{tft}_{\mathcal{C}}(\partial \mathcal{M}_Y)$
Modular tensor category $\mathcal{C} \sim \mathcal{C}$-decorated 3-d TFT

▷ Projective monoidal functor $\text{tft}_{\mathcal{C}}$ [Reshetikhin-Turaev 1991]

$\text{Cob}_{\mathcal{C}}$ (\mathcal{C}-decorated cobordisms) $\longrightarrow \text{Vect}_{\mathcal{C}}$ (f.d. vector spaces)

- extended surface $E \mapsto$ vector space $\text{tft}_{\mathcal{C}}(E)$
- cobordism $\mathcal{M}: E \to E' \mapsto$ linear map $\text{tft}_{\mathcal{C}}(\mathcal{M}): \text{tft}_{\mathcal{C}}(E) \to \text{tft}_{\mathcal{C}}(E')$

▷ Furnishes representation of the mapping class group of E
Modular tensor category $\mathcal{C} \leadsto \mathcal{C}$-decorated 3-d TFT

- Projective monoidal functor $\text{tft}_\mathcal{C}$

 $\text{Cob}_\mathcal{C}$ (\mathcal{C}-decorated cobordisms) \rightarrow \text{Vect}_\mathcal{C}$ (f.d. vector spaces)

 extended surface E \rightarrow vector space $\text{tft}_\mathcal{C}(E)$
 cobordism $M: E \rightarrow E'$ \rightarrow linear map $\text{tft}_\mathcal{C}(M): \text{tft}_\mathcal{C}(E) \rightarrow \text{tft}_\mathcal{C}(E')$

- Furnishes representation of the mapping class group of E
Modular tensor category $C \rightsquigarrow C$-decorated 3-d TFT

- Projective monoidal functor tft_C

 $\text{Cob}_C (C$-decorated cobordisms $) \hookrightarrow \mathcal{V}ect_C$ (f.d. vector spaces)

 extended surface $E \hookrightarrow$ vector space $\text{tft}_C(E)$

 cobordism $\mathcal{M}: E \to E'$ \hookrightarrow linear map $\text{tft}_C(\mathcal{M}): \text{tft}_C(E) \to \text{tft}_C(E')$

- Furnishes representation of the mapping class group of E

Fundamental conjecture:

Representations from tft_C

and from ω_C^{KnZ} are isomorphic

largely established for a broad class of models
The connecting manifold

Mapping classes and sewing constraints

Recall: \[\text{Cor}(Y) = \text{tft}_C(\mathcal{M}_Y) \ 1 \]

Ingredients needed for construction of \(\mathcal{M}_Y \):

- a modular tensor category \(C \)
- a simple symmetric special Frobenius algebra \(F \) in \(C \)
The connecting manifold

Mapping classes and sewing constraints

Recall:

\[
\text{Cor}(Y) = \text{tft}_C(M_Y) \text{1}
\]

Ingredients needed for construction of \(M_Y \):

- a modular tensor category \(C \)
- a simple symmetric special Frobenius algebra \(F \) in \(C \)

Result:

Data \(C \) and \(F \) necessary and sufficient to obtain solution to all sewing constraints

\[[\text{F-Runkel-Schweigert 2002, 2005}] \]
\[[\text{Fjelstad-F-Runkel-Schweigert 2006, 2008}] \]
The connecting manifold

Mapping classes and sewing constraints

Recall: \[\text{Cor}(Y) = \text{tft}_C(M_Y) 1 \]

Ingredients needed for construction of \(M_Y \):

- a modular tensor category \(C \)
- a simple symmetric special Frobenius algebra \(F \) in \(C \)

Result:

Data \(C \) and \(F \) necessary and sufficient to obtain solution to all sewing constraints

Construction of \(M_Y \) (with embedded ribbon graph) somewhat lengthy

Role of algebra \(F \):

- cover edges of dual triangulation of \(Y \) with ribbons labeled by \(F \)
 and trivalent vertices with coupons labeled by product/coproduct
- boundary conditions are \(F \)-modules
- bulk fields are specific \(F \)-bimodule morphisms
-
Classifying algebra

Mapping classes and sewing constraints

- CFT: Blocks and correlators
- The classifying algebra
- Sub-bundles
- Outlook
TFT construction produces universal formulas for correlators

\[Z_{i,j} = \text{tft}_C \left(\left(S^2 \times S^1 \right) \right) = \dim_{\mathbb{C}} \left(\text{Hom}_F \left(U_i \otimes^+ F \otimes^- U_j, F \right) \right) \]

for coefficients of the torus partition function \(\text{Cor}(T; \emptyset) \) in natural basis of \(B(T; \emptyset) \)
TFT construction produces universal formulas for correlators

\[Z_{i,j} = \text{tft}_C \left(S^2 \times S^1 \right) = \dim \mathbb{C} \left(\text{Hom}_F \left(U_i \otimes^+ F \otimes^- U_j, F \right) \right) \]

for coefficients of the torus partition function \(\text{Cor}(T; \emptyset) \) in natural basis of \(B(T; \emptyset) \)

Other family of correlators of special interest:

one bulk field \(\Phi \) on the disk \(D \)

with boundary condition \(M \)

\[\text{Cor}(D; \Phi; M) = \text{tft}_C \left(S^3 \right) \]
From F to A
Mapping classes and sewing constraints

- TFT construction produces universal formulas for correlators

 e.g. \(Z_{i,j} = \text{tft} c \left(\begin{array}{c}
 \includegraphics[width=0.1\textwidth]{correlator_diagram}
 \end{array} \right) \mid (S^2 \times S^1) = \dim_{\mathbb{C}} \left(\text{Hom}_F \mid_F (U_i \otimes^+ F \otimes^- U_j, F) \right) \)

 for coefficients of the torus partition function \(\text{Cor}(T; \emptyset) \) in natural basis of \(B(T; \emptyset) \)

- Other family of correlators of special interest:
 one bulk field \(\Phi \) on the disk \(D \)
 with boundary condition \(M \)

 \(\text{Cor}(D; \Phi; M) = \text{tft} c \left(\begin{array}{c}
 \includegraphics[width=0.1\textwidth]{bulk_field_diagram}
 \end{array} \right) \mid (S^3) \)

- Recall: \(M \) \(F \)-module, \(\Phi \) \(F \)-bimodule morphism

- Result:
 can also be expressed through rep theory of a finite-dimensional ordinary algebra \(A \)
The algebra \mathcal{A}

Theorem: The \mathbb{C}-vector space $\bigoplus_i \text{Hom}_{F|F}(U_i \otimes^+ F \otimes^- U_i, F)$ can be endowed with a natural structure of a semisimple unital commutative associative algebra.

- The irreducible \mathcal{A}-representations are in bijection with the elementary boundary conditions of the full CFT defined by (C, F)

[\cite{JF-Schweigert-Stigner_2009}]
The algebra \mathcal{A}

Theorem: The \mathbb{C}-vector space $\bigoplus \Hom_{F|F}(U_\iota \otimes^+ F \otimes U_{\bar{\iota}}, F)$
can be endowed with a natural structure of a semisimple unital commutative associative algebra.

The irreducible \mathcal{A}-representations are in bijection with the elementary boundary conditions of the full CFT defined by (C, F)

$\text{[JF-Schweigert-Stigner 2009]}$

Basis: $\{\phi_{\iota \alpha}\}$ $\{\phi_{\iota \alpha} | \alpha = 1, 2, \ldots, Z_{\iota \bar{\iota}}\}$ basis of $\Hom_{F|F}(U_\iota \otimes^+ F \otimes U_{\bar{\iota}}, F)$ $\iota \in \mathcal{I}$
The algebra \mathcal{A}

Theorem: The \mathbb{C}-vector space $\bigoplus_i \text{Hom}_{F|F}(U_i \otimes^+ F \otimes^− U_i, F)$ can be endowed with a natural structure of a semisimple unital commutative associative algebra.

The irreducible \mathcal{A}-representations are in bijection with the elementary boundary conditions of the full CFT defined by (C, F)

```
\begin{tikzpicture}
  \node (i) at (0,0) {$i$};
  \node (j) at (1,0) {$j$};
  \node (k) at (2,0) {$k$};
  \node (phi_i) at (0,-1) {$\phi_i$};
  \node (phi_j) at (1,-1) {$\phi_j$};
  \node (phi_k) at (2,-1) {$\phi_k$};
  \draw[->] (i) -- (phi_i);
  \draw[->] (j) -- (phi_j);
  \draw[->] (k) -- (phi_k);
  \node at (3,0) {\text{F}};
  \node at (1.5,-1) {\text{J}};
\end{tikzpicture}
```

Basis: $\{\phi_{i\alpha}\}$ $\{\phi_{i\alpha} \mid \alpha = 1, 2, \ldots, Z_{ii}\}$

Structure constants in this basis:

$$C_{\gamma, i\alpha, j\beta}^{k\gamma} = \frac{\theta_k \dim(U_k)}{S_{0,0}} \sum_{\delta=1}^{Z_{k\bar{k}}} (c^{\text{bulk}}_{k\bar{k}})^{-1}_{\delta\gamma} \text{ttt}_{C}(\text{S}^2 \times \text{S}^1)$$
Theorem: The \mathbb{C}-vector space $\bigoplus_i \text{Hom}_{\mathcal{C}}(U_i \otimes^+ F \otimes^- U_i, F)$ can be endowed with a natural structure of a semisimple unital commutative associative algebra.

The irreducible \mathcal{A}-representations are in bijection with the elementary boundary conditions of the full CFT defined by (\mathcal{C}, F).

Basis: $\{ \phi_i^\alpha \}$ $\{ \phi_i^\alpha | \alpha = 1, 2, \ldots, Z_{\bar{i}} \}$

Structure constants in this basis:

$$C_{i\alpha, j\beta}^{k\gamma} = \frac{\theta_k \dim(U_k)}{S_{0,0}} \sum_{\delta=1}^{Z_{k\bar{k}}} (c_{k\bar{k}}^{\text{bulk}})^{-1}_{\delta \gamma} \text{ft}_{\mathcal{C}}(\mathbb{S}^2 \times \mathbb{S}^1)_{(\bar{i}, j, k)}$$
Commutativity of \mathcal{A}

- Mapping classes and sewing constraints

- **Commutativity:** F Frobenius and ϕ_α, ϕ_β bimodule morphisms

\implies

ϕ_α

ϕ_β

\implies

\implies
Commutativity of \mathcal{A}

Mapping classes and sewing constraints

- Commutativity: F Frobenius and ϕ_α, ϕ_β bimodule morphisms

\[\phi_\alpha \circ \phi_\beta = \phi_\beta \circ \phi_\alpha \]
Commutativity of \mathcal{A}

 Mapping classes and sewing constraints

- **Commutativity**: F Frobenius and ϕ_α, ϕ_β bimodule morphisms

\[F F \phi_\beta \phi_\alpha = F F \phi_\beta \phi_\alpha = F F \phi_\beta \phi_\alpha = \]
Commutativity of \mathcal{A}: F Frobenius and ϕ_α, ϕ_β bimodule morphisms
Commutativity of \mathcal{A}

Mapping classes and sewing constraints

- **Commutativity**: F Frobenius and ϕ_α, ϕ_β bimodule morphisms

\[
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\quad =
\quad
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\quad =
\quad
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\quad =
\quad
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\quad =
\quad
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\quad =
\quad
\begin{array}{c}
\phi_\alpha \\
F \\
\phi_\beta
\end{array}
\]
Commutativity of \mathcal{A}

Mapping classes and sewing constraints

Commutativity: F Frobenius and ϕ_α, ϕ_β bimodule morphisms

$\phi_\alpha \circ \phi_\beta = \phi_\beta \circ \phi_\alpha$
Commutativity of \mathcal{A}

Mapping classes and sewing constraints

- Commutativity: F Frobenius and ϕ_α, ϕ_β bimodule morphisms

\[
\phi_\alpha \circ \phi_\beta = \phi_\beta \circ \phi_\alpha
\]

\[
C_{i\alpha, j\beta} = \frac{\theta_k \dim(U_k)}{S_{0,0}} \sum_{\delta=1}^{Z_{k\bar{k}}} (c_{k\bar{k}}^{\text{bulk}})^{-1} \text{ft}_t \gamma \left(S^2 \times S^1 \right)
\]

is symmetric in $(i\alpha)$ and $(j\beta)$
Also easy:

- **Unit**: $e = \phi_0 \circ (U_0 \equiv 1, \phi \circ \text{id}_1)$

\[
tftc(S^2 \times S^1) \quad \text{totally symmetric} \quad \implies \quad C_{\alpha,0^0}^{k\gamma} = \delta_{k\gamma} \delta_{\alpha\gamma}
\]
Associativity of \mathcal{A}

Also easy:

- **Unit**: $e = \phi_0 \circ (U_0 \equiv 1, \phi = \text{id}_1)$

$$\text{tft}_C \left(\begin{array}{c} 2 \end{array} \right) \quad \text{totally symmetric} \quad \Longrightarrow \quad C_{i\alpha,0\circ} = \delta_{ki} \delta_{\alpha\gamma}$$

- **Associativity**: \mathcal{A} has n-ary products with structure constants

$$C_{i_1 \alpha_1, i_2 \alpha_2, \ldots, i_n \alpha_n} = \frac{\theta_k \dim(U_k)}{S_{0,0}} \sum_{\delta} (c_{k\delta}^{\text{bulk}})^{-1} \text{tft}_C \left(\begin{array}{c} \phi_{\alpha_n} \\ h_n \\ \phi_{\alpha_1} \\ h_{n-1} \\ \phi_{\delta} \\ k \end{array} \right)$$
Associativity of \mathcal{A}

Mapping classes and sewing constraints

Also easy:

- **Unit**: $e = \phi_0$ \quad ($U_0 \equiv 1$, $\phi_0 = \text{id}_1$)

- **Associativity**:
 - \mathcal{A} has n-ary products with structure constants

 $C_{i_1\alpha_1, i_2\alpha_2, \ldots, i_n\alpha_n}^{k\gamma} = \frac{\theta_k \cdot \dim(U_k)}{S_{0,0}} \sum_{\delta} (C_{k\delta}^{\text{bulk}})^{-1} \text{tft}_C \left(S^2 \times S^1 \right)$

 - totally commutative
 - direct calculation $\Rightarrow C_{i\alpha, j\beta, k\gamma}^{q\delta} = \sum_{\ell, \mu} C_{j\beta, k\gamma}^{\ell\mu} C_{i\alpha, \ell\mu}^{q\delta}$
Associativity of \mathcal{A}

Also easy:

- **Unit**: $e = \phi_0 = 1$, $\phi = id_1$

\[
C_{\ldots}^{k\gamma} \delta_{k\ell} \delta_{\alpha\gamma}
\]

Associativity:

- \mathcal{A} has n-ary products with structure constants

\[
C_{\ldots}^{k\gamma} = \theta_k \frac{\dim(U_k)}{S_{0,0}} \sum_{\delta} (c_{k\ell \delta})^{-1} \text{tft}_{C}(\ldots)
\]

- totally commutative

- direct calculation

More involved: **Semisimplicity**
Two factorizations

$J F Maresias 17 \rightarrow p. 10$
Two factorizations

Mapping classes and sewing constraints

\[m = 2 \]

\[m = 2 \]
Two factorizations

Mapping classes and sewing constraints

\[m = 2 \]

\[m = 2 \]
Two factorizations

Mapping classes and sewing constraints

\[m = 2 \]

\[m = 2 \]
Semisimplicity of \mathcal{A}

Mapping classes and sewing constraints

Semisimplicity:

use bulk and boundary factorization of correlator for two bulk fields on disk

Boundary factorization:

$$\implies (\text{Cor}(D; \Phi_\alpha, \Phi_\beta; M))_{p,\kappa,\lambda} = \sum_{q} \sum_{\gamma,\delta} \dim(U_q) \left(c_{M,M,q}^{\text{bnd}} \right)^{-1} \delta_{\gamma,\delta} \text{int}_C \left(\psi_{\gamma,\delta}(S^3) \right)$$
Semisimplicity of \mathcal{A}

Mapping classes and sewing constraints

Semisimplicity:

use bulk and boundary factorization of correlator for two bulk fields on disk

- Boundary factorization
- Bulk factorization:

$$\implies \text{Cor}(D; \Phi_\alpha, \Phi_\beta; M) = \sum_{q_1, q_2} \sum_{\gamma, \delta} \dim(U_{q_1}) \dim(U_{q_2}) (c^\text{bulk}_{q_1, q_2}^{-1})_{\delta \gamma} \text{ftt}_C(M; \Phi_\beta, \Phi_\alpha, \Phi_\gamma, \Phi_\delta, \text{ftt}_C(M; \Phi_\beta, \Phi_\alpha, \Phi_\gamma, \Phi_\delta))$$
Semisimplicity of \mathcal{A}

Mapping classes and sewing constraints

Semisimplicity:

use bulk and boundary factorization of correlator for two bulk fields on disk

- Boundary factorization
- Bulk factorization:

Comparison in *vacuum channel*

\Rightarrow for any elementary boundary condition M the

reflection coefficients $\text{Cor}(D; \Phi^{(i\bar{i})}_\alpha; M)/c_{M,0}^{\text{bnd}}$ furnish a one-dimensional \mathcal{A}-rep
Semisimplicity of \(\mathcal{A} \)

Mapping classes and sewing constraints

Semisimplicity:

use bulk and boundary factorization of correlator for two bulk fields on disk

- **Boundary factorization**
- **Bulk factorization:**
- **Comparison in vacuum channel**
- The matrix with entries \(\tilde{s}_{i\alpha,\kappa} = \) is non-degenerate

 \[M_\kappa \text{ inequivalent elementary boundary conditions} \]

\[n_{\text{simp}}(\mathcal{A}) \geq \dim_\mathbb{C}(\mathcal{A}) \]
Semisimplicity of \mathcal{A}

Mapping classes and sewing constraints

Semisimplicity:

use bulk and boundary factorization of correlator for two bulk fields on disk

- Boundary factorization
- Bulk factorization:
- Comparison in vacuum channel
- The matrix with entries $\tilde{s}_{i\alpha,\kappa} = M_{\kappa}$ is non-degenerate
- M_{κ} inequivalent elementary boundary conditions
- Structure theory of finite-dim. associative algebras
- Thus: $n_{\text{simpl}}(\mathcal{A}) = \dim_{\mathbb{C}}(\mathcal{A})$
 - all irreducible \mathcal{A}-representations one-dimensional and projective
 - irreducible \mathcal{A}-representations $\overset{\sim}{\leftarrow}$ elementary boundary conditions
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Boundary factorization
Cartoon: Boundary factorization

Mapping classes and sewing constraints

- Manipulate correlator for m bulk fields on disk with boundary condition M:
 - Connecting manifold
 - Boundary factorization
 - Choice of distinguished basis
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Boundary factorization
- Choice of distinguished basis
- Expansion in basis
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Boundary factorization
- Choice of distinguished basis
- Expansion in basis
- Dominance
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Boundary factorization
- Choice of distinguished basis
- Expansion in basis
- Dominance
- Projection on $p = 0$
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold

\[
\mathcal{M}_Y = \ldots
\]
Manipulate correlator for \(m \) bulk fields on disk with boundary condition \(M \):

- Connecting manifold
- Bulk factorization

\(\sim \) Piece 1: The nibbled apple

\[
\mathcal{M}_{Y}^{\circ,1} =
\]
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut

$$\mathcal{M}_Y^{o,2} =$$
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder

$$T_{q_1 q_2 \gamma \delta} = \ldots$$
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder
- Doughnut glued to cylinder
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder
- Doughnut glued to cylinder
- Turning inside out
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder
- Doughnut glued to cylinder
- Turning inside out
- Nibbled apple glued to cylinder + doughnut
 \[M_{Y; q_1 q_2 \gamma \delta} = \]

\[m = 2 \]
Manipulate correlator for \(m \) bulk fields on disk with boundary condition \(M \):

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder
- Doughnut glued to cylinder
- Turning inside out
- Nibbled apple glued to cylinder + doughnut
 - \(m = 2 \)
- Expansion in distinguished basis
Manipulate correlator for m bulk fields on disk with boundary condition M:

- Connecting manifold
- Bulk factorization
 - Piece 1: The nibbled apple
 - Piece 2: The bigonal doughnut
 - Generic piece: The gluing cylinder
- Doughnut glued to cylinder
- Turning inside out
- Nibbled apple glued to cylinder+doughnut
 - $m = 2$
- Expansion in distinguished basis
- Dominance

\[M_{Y; q\bar{q}\gamma\delta} = \]
Sub-bundles

Mapping classes and sewing constraints

- CFT: Blocks and correlators
- The classifying algebra
- Sub-bundles
- Outlook
Recall:

- Space of conformal blocks carries representation of mapping class group

- Structure constants

\[C_{i\alpha, j\beta}^{k\gamma} = \cdots \sum \cdots \text{tft}_C \left(\begin{array}{c} \begin{array}{c} 2 \ 2 \ 2 \end{array} \end{array} \right) \left(S^2 \times S^1 \right) \]
Recall:

- Space of conformal blocks carries representation of mapping class group

Structure constants:

\[C_{i\alpha, j\beta}^{k\gamma} = \cdots \sum \cdots \text{tft}_{C} \left(\begin{array}{c}
 2 \\ 2 \\ 2 \\
\end{array} \right)_{(S^2 \times S^1)} \]

\[= \cdots \sum \cdots \text{tr}(f) \quad f \in \text{End}(B_{S^2}) \]
- Recall:
 - Space of conformal blocks carries representation of mapping class group
 - Structure constants
 \[C_{i\alpha,j\beta}^k \gamma = \cdots \sum \cdots \text{tft}_C \left(\begin{array}{c}
\vdots \vline \cdots \vline \vdots \\
\vline \cdots \vline \cdots \vline \\
\vline \cdots \vline \vdots
\end{array} \right) \left(S^2 \times S^1 \right) \]
 \[= \cdots \sum \cdots \text{tr}(f) \]
 \[f \in \text{End}(B_{S^2}) \]
 - Properties of \(F \) (symmetric special Frobenius) and \(\phi_\alpha, \ldots \) (bimodule morphisms)
 \[\implies \text{tft}_C(f) \text{ invariant under change of dual triangulation of } S^2 \text{ for any } m \]
 \[\implies f \text{ interwines mapping class group action on } \text{End}(B_{S^2}) \]
Sub-bundles

Mapping classes and sewing constraints

- **Recall:**
 - Space of conformal blocks carries representation of mapping class group
 - Structure constants

 $C_{r\alpha,j\beta}^{k\gamma} = \cdots \sum \cdots \text{tr}(f^c(S^2 \times S^1))$

- Properties of F (symmetric special Frobenius) and ϕ_α, \ldots (bimodule morphisms)
 - $\implies t\text{ft}_c(f)$ invariant under change of dual triangulation of S^2 for any m
 - $\implies f$ interwines mapping class group action on $\text{End}(B_{S^2})$

- In particular: f not proportional to $\text{id}_{B_{S^2}}$
 - \implies representation of mapping class group reducible
 - \implies bundles of conformal blocks on S^2 have non-trivial sub-bundles

- Expect: f indeed non-trivial for suitable choice of decorations
Outer automorphisms

Example: $\mathcal{V}_{g,k}$

- Outer automorphisms of $\hat{\mathfrak{g}}$ act on $\text{Obj}(\mathcal{V}_{g,k})$
 \sim act on conformal blocks on S^2

- Suitable choice of decorations (fixed points of action on $\text{Obj}(\mathcal{V}_{g,k})$)
 \sim diagram automorphisms of $\hat{\mathfrak{g}}$ give bundle automorphisms
 \sim reducibility

- Conjectures on ranks of sub-bundles:
 Analogues of Verlinde formula using modular S-matrix for orbit Lie algebra $\hat{\mathfrak{g}}_\omega$

[J F-Schweigert 1999]
[J F-Schweigert 2002]
Outer automorphisms

Example: $\mathcal{V}_{g,k}$

- Outer automorphisms of $\hat{\mathfrak{g}}$ act on $\text{Obj}(\mathcal{V}_{g,k})$
 - act on conformal blocks on S^2

- Suitable choice of decorations (fixed points of action on $\text{Obj}(\mathcal{V}_{g,k})$)
 - diagram automorphisms of $\hat{\mathfrak{g}}$ give bundle automorphisms
 - reducibility

- Conjectures on ranks of sub-bundles:
 - Analogues of Verlinde formula using modular S-matrix for orbit Lie algebra $\hat{\mathfrak{g}}_\omega$

- Outer automorphisms of $\hat{\mathfrak{g}}$ not preserving \mathfrak{g} act on invertible simple objects of $\text{Rep}(\mathcal{V}_{g,k})$
 - Schellekens algebra F in $\text{Rep}(\mathcal{V}_{g,k})$: s.s.s. FA with all simple subobjects invertible

[Schweigert 1999]

[Schweigert 2002]
Outlook

Mapping classes and sewing constraints

- CFT: Blocks and correlators
- The classifying algebra
- Sub-bundles
- Outlook
Cardy case: F Morita equivalent to 1

- Torus partition function $Z_{t,j} = \dim_{\mathbb{C}}(\text{Hom}(U_t \otimes 1 \otimes U_j, 1)) = \delta_{t,j}$
Cardy case: F Morita equivalent to 1

- Torus partition function $Z_{i,j} = \dim \mathbb{C}(\text{Hom}(U_i \otimes 1 \otimes U_j, 1)) = \delta_{i,j}$

- Structure constants $C^{k_0}_{i_0, j_0} = \text{tr}(\text{id}_{S^2}) = \dim \mathbb{C}(\text{Hom}(U_i \otimes U_j \otimes U_{\overline{k}}, 1))$

$\implies \mathcal{A} = \text{Verlinde algebra}$
Cardy case: \(F \) Morita equivalent to \(\mathbf{1} \)

- Torus partition function \(Z_{i,j} = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes \mathbf{1} \otimes U_j, \mathbf{1})) = \delta_{i,j} \)
- Structure constants \(C_{i_0,j_0}^{k_0} = \text{tr}(\text{id}_{B_{\mathbb{S}^2}}) = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes U_j \otimes U_{\bar{k}}, \mathbf{1})) \)

\[\Rightarrow \mathcal{A} = \text{Verlinde algebra} \]

Thus: General case will give a generalization of the Verlinde formula
Outlook

Cardy case: \(F \) Morita equivalent to \(1 \)

- Torus partition function \(Z_{i,j} = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes 1 \otimes U_j, 1)) = \delta_{i,j} \)
- Structure constants \(C_{i,0,j,0}^{k_0} = \text{tr}(\text{id}_{B_{S^2}}) = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes U_j \otimes U_{-k}, 1)) \)

\[\implies \mathcal{A} = \text{Verlinde algebra} \]

Thus: General case will give a generalization of the Verlinde formula

Interesting subclass: \(F \) Schellekens algebra for any \(C \)

\(\leadsto \) interpretation in terms of abelian group cohomology
Cardy case: \(F \) Morita equivalent to \(1 \)

- Torus partition function
 \[Z_{i,j} = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes 1 \otimes U_j, 1)) = \delta_{i,j} \]

- Structure constants
 \[C^{k_0}_{i_0, j_0} = \text{tr}(\text{id}_{B^2}) = \dim_{\mathbb{C}}(\text{Hom}(U_i \otimes U_j \otimes U_{\bar{k}}, 1)) \]
 \[\implies \mathcal{A} = \text{Verlinde algebra} \]

Thus: General case will give a generalization of the Verlinde formula

Interesting subclass: \(F \) Schellekens algebra for any \(C \)

- Interpretation in terms of abelian group cohomology

\(F-F' \)-bimodules instead \(F \)-modules

- Classifying algebra for \textit{topological defect lines}
THANK YOU

Mapping classes and sewing constraints