CFT and tensor categories - Part I

Introduction 2
Conformal vertex algebras 16
Conformal blocks 32
Full CFT 39
$\mathcal{R} \operatorname{ep}(\mathcal{V})$ and tensor categories 47
Bibliography 54

INTRODUCTION

Topics

- Why CFT?
- What is "CFT"?
- Where does CFT live?
- What is the goal?
- What input is needed?
[thus: a lot \Longrightarrow restrict to a few selected topics]

Why CFT?

- Critical limit of lattice models in statistical mechanics prototypical example: Ising model
\mathbb{Z}_{2}-valued variable $s \in\{ \pm 1\}$ at each lattice point ('spin up / down') nearest-neighbor ferromagnetic interaction on a (say) cubic d-dim lattice.

Goal: (be able to) compute correlation functions
$=$ expectation values $/$ moments wrt the thermal partition function

$$
Z \sim \sum_{\text {configurations }} \exp [- \text { interaction energy(config.) / temperature }]
$$

of products of suitable local observables
typically fall of exponentially \rightarrow correlation length(s)
at a critical point - fall off only power-like
\Longrightarrow correlation length infinite / larger than size of the system relevant here are critical points of second order phase transitions

Scaling limit: let lattice spacing go to zero and vary interaction strength such that correlation length kept constant
limit defines a continuum field theory
under some mild assumptions on the interaction can argue that this theory is conformal for details see e.g. [C]

Other areas:

- String theory
motion of a relativistic string in some D-dim space(-time) M many aspects understood in terms of a QFT living on the 2-dim surface swept out by the propagating string embedding of this world sheet into M amounts to interpreting coordinates on (a patch of) M as 2-dim fields consistency \Longrightarrow 2-dim QFT conformal
- Effectively 2-dim structures in condensed matter physics e.g. quantum Hall effect
possibly high- T_{c} superconductivity
- Effectively 1+1-dim structures in condensed matter physics e.g. Kondo effect or other impurities
- Critical percolation
- Laboratory for QFT
- Fundamental physics \longleftrightarrow Mathematics

What is C FT? - Symmetries

roughly: $\mathrm{CFT}=$ quantum field theory with conformal symmetry

Conformal transformations

conformal transformations of \mathbb{R}^{d}
/ (pseudo-)Riemannian d-dim manifold (space-time): general coordinate transf preserving angle between any two vectors equivalently: change space-time metric only by a local scale factor:

$$
g_{\mu \nu}(x) \mapsto \sigma(x) g_{\mu \nu}(x)
$$

for infinitesimal reparametrization

$$
x^{\mu} \mapsto x^{\mu}+\varepsilon f^{\mu}(x)+\mathcal{O}\left(\varepsilon^{2}\right),
$$

g being a 2nd-rank tensor means that

$$
g_{\mu \nu} \mapsto g_{\mu \nu}-\varepsilon \partial_{\mu} f_{\nu}-\varepsilon \partial_{\nu} f_{\mu}+\mathcal{O}\left(\varepsilon^{2}\right)
$$

\Longrightarrow in flat space-time. requirement that $\delta g_{\mu \nu}(x) \propto g_{\mu \nu}(x)$ amounts to

$$
\partial_{\mu} f_{\nu}+\partial_{\nu} f_{\mu}=\gamma(x) g_{\mu \nu}(x)
$$

for some function γ
eliminate γ by contraction with $g \Longrightarrow$

$$
\begin{equation*}
d\left(\partial_{\mu} f_{\nu}+\partial_{\nu} f_{\mu}\right)-2 g_{\mu \nu} \partial_{\rho} f^{\rho}=0 \tag{1}
\end{equation*}
$$

(necessary and sufficient)
Various further relations by suitably taking derivatives and contracting

Infinitesimal transformations for $d>2$

$(1) \Longrightarrow$ for $d>2: \partial_{\mu} \partial_{\nu} \partial_{\rho} f^{\sigma}=0$
$\Longrightarrow f^{\mu}$ of at most second order in x
implement further restrictions
\Longrightarrow independent infinitesimal conformal transformations are:

- translations: f^{μ} constant
- dilatations (scalings): $\quad f^{\mu}=x^{\mu}$
- rotations / boosts: $f^{\mu}=\sum_{\nu} \mathrm{m}_{\nu}^{\mu} x^{\nu}$ with constant $\mathrm{m}_{\mu \nu}=-\mathrm{m}_{\nu \mu}$
- special conformal transf.: $\quad f^{\mu}=c^{\mu}|x|^{2}-2 \sum_{\nu} c_{\nu} x^{\mu} x^{\nu}$
with c_{μ} constant
translations and rotations are even isometries dilatations only change the overall scale corresponding differential operators (on functions):
translations:

$$
P_{\mu}=\partial_{\mu}
$$

rotations:

$$
M_{\mu \nu}=\frac{1}{2}\left(x_{\mu} \partial_{\nu}-x_{\nu} \partial_{\mu}\right)
$$

dilatations:

$$
D=x^{\mu} \partial_{\mu}
$$

special conformal transformations : $K_{\mu}=|x|^{2} \partial_{\mu}-2 x_{\mu} x^{\nu} \partial_{\nu}$ form a basis of a real form of $\mathfrak{s o}(d+2, \mathbb{C})$
$\mathfrak{s o}(p+1, q+1)$ for signature $\left((-)^{q},(+)^{p}\right)$
$\mathfrak{s o}(d, 2)$ for Minkowski space

Finite transformations in $d>2$ Minkowski space

finite transformations: corresponding finite-dimensional Lie group natural starting point: conformal group $S O(d, 2)$
e.g. dilatations: $\quad x_{\mu} \mapsto \rho x_{\mu}, \quad \mathrm{d} s^{2} \mapsto \rho^{2} \mathrm{~d} s^{2}$
special conformal transformations:

$$
\begin{aligned}
& x_{\mu} \mapsto\left(1+2 c \cdot x+|c|^{2}|x|^{2}\right)^{-1} x_{\mu}+c_{\mu}|x|^{2} \\
& \mathrm{~d} s^{2} \mapsto\left(1+2 c \cdot x+|c|^{2}|x|^{2}\right)^{-2} \mathrm{~d} s^{2}
\end{aligned}
$$

in particular: $-c \mapsto \infty$ and space-like \mapsto time-like
thus $S O(d, 2)$ does not act properly on space-time, and seems incompatible with causality

Resolution:

- $S O(d, 2) \sim$ simply-connected universal covering group
(also accounts for fact that in quantum theory get projective rep's)
- Minkowski space \leadsto a certain infinite covering with topology of $S^{d-1} \times \mathbb{R}$ ("tube")
similar issues arise for $d=2$ - will be largely suppressed partly because Minkowski-signature world sheets will not really be of interest
$d=2$
$d=2$ Minkowski space:
light cone coordinates $x_{ \pm}:=x^{0} \pm x^{1}, \quad \partial_{ \pm}:=\frac{1}{2}\left(\partial_{0} \pm \partial_{1}\right)$
for $f_{ \pm}:=f_{0} \pm f_{1}$, (1) reduces to $\partial_{+} f_{-}=0=\partial_{-} f_{+}$, solved by

$$
f_{+}=f_{+}\left(x_{+}\right), \quad f_{-}=f_{-}\left(x_{-}\right) .
$$

thus the finite conformal transformations are those of the form

$$
x_{+} \mapsto f_{+}\left(x_{+}\right), \quad x_{-} \mapsto f_{-}\left(x_{-}\right)
$$

with independent real-valued functions $f_{ \pm}$.
analogously for Euclidean world sheet:
complex coordinate $z=x^{1}+\mathrm{i} x^{2}$
\Longrightarrow Cauchy-Riemann equations for f
the finite conformal transformations are

$$
z \mapsto f(z)
$$

with f an analytic function of z
\Longrightarrow infinitely many independent infinitesimal transformations:

$$
z \mapsto z+\varepsilon z^{n+1}, \quad n \in \mathbb{Z}
$$

corresponding differential operators on functions:

$$
\ell_{n}=-z^{n+1} \partial_{z}
$$

span the Witt algebra: Lie algebra with

$$
\left[\ell_{m}, \ell_{n}\right]=(m-n) \ell_{m+n}
$$

Quantum theory: need central extension

$$
0 \rightarrow \mathbb{C} \rightarrow \text { Vir } \rightarrow \mathcal{W} \text { itt } \rightarrow 0
$$

up to isomorphism, unique non-trivial central extension:
Virasoro algebra: standard basis $\left\{L_{m} \mid m \in \mathbb{Z}\right\} \cup\{C\}$ with

$$
\begin{aligned}
& {\left[L_{m}, L_{n}\right]=(m-n) L_{m+n}+\frac{1}{12}\left(m^{3}-m\right) \delta_{m+n, 0} C} \\
& {\left[C, L_{n}\right]=0}
\end{aligned}
$$

no central term for $m=0, \pm 1$
corresponding finite transformations: Möbius transformations

$$
x \mapsto \frac{a x+b}{c x+d} \quad a, b, c, d \in \mathbb{R}, \quad a d-b c=1
$$

resp.

$$
\begin{array}{r}
z \mapsto \frac{A z+B}{C z+D} \quad A, B, C, D \in \mathbb{C}, \quad D=-A^{*}, C=-B^{*} \\
|A|^{2}-|B|^{2}=1
\end{array}
$$

two copies, from $x=x_{ \pm} \Longrightarrow$ give $\mathfrak{s o}(1,2) \oplus \mathfrak{s o}(1,2) \cong \mathfrak{s o}(2,2)$ analogous transformations present for arbitrary d

More symmetries

understanding this conformal symmetry is not sufficient

- can have (many) more symmetries
- need to implement symmetries not only geometrically but also on "fields" / "physical states"
\Longrightarrow more complicated structures, beyond Lie algebras
- world sheet in applications
not just the 2-d Minkowski space / complex plane
\Longrightarrow symmetries realized in above form only in neighborhood of a given field insertion (local cooordinates)
but also want 'global' implementation of symmetries (account for presence of other fields and for topological features of the world sheet)

Where does CFT live? - The world sheet

two important issues (not present in conventional QFT) :

- in applications (e.g. string theory)
need to consider simultaneously various possibilities for the 2-dim space(-time) $=$ the world sheet X
accordingly, may think of CFT in terms of functor from a category of world sheets to vector spaces (reminiscent of 3 -dim TFT functors)

NB: same paradigm used in recent work on generally covariant QFT

- do not specify all properties of X from the beginning be prepared to assume different properties in different settings common setting :

X a smooth 2-d manifold with a conformal structure or possibly even with a definite choice of metric
here, in full generality, only assume:
X just a 2-dim topological manifold

What is the goal? - Compute correlators

basically: a correlator associates a number to a field configuration NB: no particle picture, but still fields, which carry "charges" analogue in electrostatics: to a configuration of electric point charges associate the energy stored in the electric field
in CFT:
fields come as elements of vector spaces
\Longrightarrow
correlator $=$ multilinear function from a collection of vector spaces to \mathbb{C}
side remark: in electrostatics do not include self energy. in QED include it, but requires renormalized perturbation theory in contrast, in CFT can make exact statements and calculations without having to resort to any form of perturbation theory

Basic input

- symmetries
to be encoded in a suitable algebraic structure then much of the theory amounts to use the rep theory of that structure analogue in standard QFT:
particles as rep's of the space-time symmetries (Poincaré group)
- "dynamics"
in CFT, no separate issue: include (almost) all symmetries as well as all interactions compatible with them
- relevant concept(s) of fields

Basic tools

- vertex operator algebras and their rep's
- simple and affine Lie algebras and some of their rep's
- tensor categories, ribbon categories,
- 3-dim topological field theory
- algebra in tensor categories
- also (will not appear here): some geometry \& analysis

Message

in rational CFT can translate physical principles and ideas in such a way into mathematical structures that

- precise statements can be made
- these statements can be proven
- the mathematical results allow to answer physical problems including concrete numerical results for specific models

CONFORMAL VERTEX ALGEBRAS

Wightman axioms

Idea:
formalize Wightman axioms and operator product expansion scale invariance \Longrightarrow OPE make sense for arbitrary distances

Wightman axioms - in massaged form:
Data:

- space of states: infinite-dimensional complex vector space \mathcal{H}
- vacuum vector $|0\rangle \in \mathcal{H}$
- rep U of space-time symmetry group G, e.g. Poincaré group, on \mathcal{H}
- collection of localized/localizable fields which can 'act' on \mathcal{H}

Axioms, roughly:

- covariance:
G acts on fields, in a way compatible with its action on their support
- invariance of vacuum:
$U(g)|0\rangle=|0\rangle$ for all $g \in G \quad$ (thus e.g. lowest energy state)
- completeness: acting with all fields on $|0\rangle$ yields essentially all of \mathcal{H} e.g. for \mathcal{H} a Hilbert space, a dense subspace
but: from now on, \mathcal{H} just a vector space
- locality / causality:
fields with causally disconnected support commute

Definition: Vertex algebra

can argue that adaptation to $d=2$ conformal QFT is captured by notion of "conformal vertex algebra" in particular, completeness amounts to "state-field correspondence"

Def.: vertex algebra \mathcal{V}

Data:

- space of states:
 here: finite-dimensional homogeneous subspaces $V_{(n)}$
- vacuum vector $|0\rangle \in V_{(0)}$
- shift or translation operator: linear map $T: \mathcal{V} \rightarrow \mathcal{V}$
- vertex operator map or state-field correspondence: linear map

$$
Y: \mathcal{V} \rightarrow \operatorname{End}(\mathcal{V}) \llbracket z, z^{-1} \rrbracket
$$

Warning: z a formal variable, not a local complex coordinate
for $v \in \mathcal{V}$ call $Y(v)$ the vertex operator or field associated to v
write $Y(v) \equiv Y(v ; z)$
and (for $\left.a \in V_{(n)}\right) \quad Y(a ; z)=: \sum_{m \in \mathbb{Z}} a_{m} z^{-n-m}$
call the linear maps a_{m} the Laurent modes of $Y(a)$
Warning: often do not include the " $-n$ " in the exponent

Axioms:

- the vacuum corresponds to the identity field: $Y(|0\rangle ; z)=i d \mathcal{V}$
- the state-field correspondence respects the grading:

$$
a_{m}\left(V_{(p)}\right) \subseteq\left(V_{(p-m)}\right) \text { for } a \in V_{(n)}
$$

- the term 'state-field correspondence' makes sense:
recover a state by applying the field to the vacuum for " $z \rightarrow 0$ ":

$$
Y(v ; z)|0\rangle \in v+z \mathcal{V} \llbracket z \rrbracket
$$

- T indeed implements infinitesimal translations:

$$
[T, Y(v ; z)]=\partial_{z} Y(v ; z)
$$

with $\partial_{z} \equiv \frac{\partial}{\partial z}$

- the vacuum is translation invariant: $T|0\rangle=0$
- locality: for any two $v_{1}, v_{2} \in \mathcal{V}$ there is $N=N\left(v_{1}, v_{2}\right) \in \mathbb{Z}_{\geq 0}$ s.t.

$$
\begin{aligned}
& \left(z_{1}-z_{2}\right)^{N}\left[Y\left(v_{1} ; z_{1}\right), Y\left(v_{2} ; z_{2}\right)\right]=0 \\
& \quad \text { as an element of } \operatorname{End}(\mathcal{V}) \llbracket z_{1}, z_{1}^{-1}, z_{2}, z_{2}^{-1} \rrbracket
\end{aligned}
$$

roughly, commutators can be singular at coinciding arguments but are defined for arbitrary fields and singularity is at most a finite-order pole

Note:
crucial that series extend infinitely in positive and negative powers

Interlude: Formal power series

product of fields generally not defined details need calculus of formal power series e.g. can multiply any formal power series with a Laurent polynomial typical examples of formal power series which allow to satisfy locality: formal delta function $\delta\left(z-z^{\prime}\right):=\sum_{n \in \mathbb{Z}} z^{n}\left(z^{\prime}\right)^{-n-1}$ and its derivatives, which satisfy

$$
\left(z-z^{\prime}\right)^{n+1} \partial_{z^{\prime}}^{n} \delta\left(z-z^{\prime}\right)=0
$$

δ can be multiplied with any formal power series g, and

$$
g(z) \delta\left(z-z^{\prime}\right)=g\left(z^{\prime}\right) \delta\left(z-z^{\prime}\right)
$$

locality
\Longleftrightarrow commutator is finite sum of terms "field \times derivative of δ "

Warning: $\frac{1}{z-z^{\prime}}$ is not directly a formal power series but it becomes one via $\frac{1}{z-z^{\prime}}=\frac{1}{z} \frac{1}{1-\frac{z^{\prime}}{z}}$ and ' expand about $\frac{z^{\prime}}{z}=0$ ' then in particular

$$
\frac{1}{z-z^{\prime}} \neq-\frac{1}{z^{\prime}-z}
$$

indeed

$$
\frac{1}{z-z^{\prime}}+\frac{1}{z^{\prime}-z}=\delta\left(z-z^{\prime}\right)
$$

Definition: Conformal vertex algebra

up to now conformal symmetry not assumed yet to implement it: promote the shift operator T to a field $T(z)$

Def.: conformal vertex algebra \mathcal{V}
a vertex algebra with one additional datum :

- the Virasoro vector: an element \mid vir $\rangle \in V_{(2)}$ set $T(z):=Y(\mid$ vir $\rangle ; z)=: \sum_{n \in \mathbb{Z}} L_{n} z^{n-2}$
and additional axioms involving |vir \rangle :
- $L_{-1}=T$
- L_{0} produces the grading: $\left.L_{0}\right|_{V_{(n)}}=n i d_{V_{(n)}}$
and is semisimple
- $L_{2} \mid$ vir $\rangle \left.=\frac{c}{2} \right\rvert\,$ vir \rangle for some $c \in \mathbb{C}$
c is the called the central charge of \mathcal{V}

Theorem:
the Laurent components L_{n} furnish a rep of Vir with $C=c i d \mathcal{\nu}$

Remarks:

- various slightly different versions are in use, e.g.
distinguish 'conformal vertex algebra' from 'vertex operator algebra' these differences are irrelevant for the present purposes
- physics literature concept "chiral algebra" amounts (when defined) to conformal vertex algebra
- $T(z)$ is (one component / the chiral part of) the energy-momentum tensor
- radially ordered product of two fields $Y(u)$ and $Y(v)$:
defined via suitable analytic continuation of $Y\left(Y(u ; z) v ; z^{\prime}\right)$
(z interpreted as complex number)
gives the physical notion of operator product expansion of fields in the chiral algebra
- requiring L_{0} to be semisimple excludes 'logarithmic' CFT
- the span of all Laurent components of all fields $Y(v)$ has the structure of a Lie algebra
for generic vertex algebras the latter is not of much help,
but there are interesting vertex algebras in which one can reconstruct \mathcal{V} from a finite (small) number of fields then much of the rep theory of \mathcal{V} reduces to the one of the Lie algebra

Example: Commutative vertex algebras

- a somewhat degenerate example -
let A be a unital commutative associative $\mathbb{Z}_{\geq 0}$-graded \mathbb{C}-algebra with finite-dimensional homogeneous subspaces and a derivation T of grade 1

Then

$$
Y(a ; z):=\mu\left(\mathrm{e}^{z T} a\right) \equiv \sum_{n=0}^{\infty} T^{n} a z^{n}
$$

and $|0\rangle:=$ unit element
gives a vertex algebra structure on A
which is commutative: $N \equiv N(a, b)=0$ for all $a, b \in A$
every commutative vertex algebra is obtained this way
similarly for every vertex algebra for which N is bounded
this example is not relevant for CFT
in the following concentrate on special cases relevant to CFT:
\mathcal{V} generated (via ∂_{z} and : : :) by finitely many fields Y_{i}

Example: Heisenberg vertex algebra

based on the Heisenberg Lie algebra:
basis $\left\{b_{n} \mid n \in \mathbb{Z}_{\neq 0}\right\} \cup\{1\}$ with relations

$$
\left[b_{m}, b_{n}\right]=m \delta_{m+n, 0}, \quad\left[1, b_{n}\right]=0
$$

Def.:

- space of states: Fock space $=U_{-}|0\rangle$ with U_{-}the universal enveloping algebra of $\operatorname{span}\left\{b_{n} \mid n \in \mathbb{Z}_{<0}\right\}$
- vacuum vector: defined by $1|0\rangle=|0\rangle$ and $b_{n}|0\rangle=0$ for $n>0$ thinking of $b_{n<0}$ as formal variables and of $b_{n>0}$ as (scaled) derivatives w.r.t. $b_{-n},|0\rangle$ is the polynomial 1
- vertex operators:

$$
\begin{aligned}
& Y\left(b_{-m_{1}} b_{-m_{2}} \cdots b_{-m_{k}}|0\rangle ; z\right):=\text { const }: \partial_{z}^{m_{1}-1} b(z) \cdots \partial_{z}^{m_{k}-1} b(z): \\
& \text { with } \quad b(z):=\sum_{n \in \mathbb{Z}} b_{n} z^{-n-1}=Y\left(b_{-1}|0\rangle ; z\right)
\end{aligned}
$$

and normal ordering

$$
: A(z) B\left(z^{\prime}\right)::=A(z)_{+} B\left(z^{\prime}\right)+B\left(z^{\prime}\right) A(z)_{-}
$$

with $A(z)_{+}:=\sum_{n \leq-\Delta_{A}} A_{n} z^{-n-\Delta_{A}}, A(z)_{-}:=\sum_{n>-\Delta_{A}} A_{n} z^{-n-\Delta_{A}}$

- Virasoro vector: \mid vir $\rangle=\frac{1}{2} b_{-1} b_{-1}|0\rangle$

Theorem: this gives a conformal vertex algebra with $c=1$

NB: normal ordering \simeq "put annihilation operators to the right"

Interlude: Affine Lie algebras

loop algebra $\mathfrak{g}_{\text {loop }}$ of a Lie algebra \mathfrak{g}
$=$ Laurent polynomials with values in \mathfrak{g} :

$$
\mathfrak{g}_{\text {loop }}:=\mathfrak{g} \otimes_{\mathbb{C}} \mathbb{C}((t))
$$

is naturally a Lie algebra, with bracket

$$
[x \otimes f, y \otimes g]:=[x, y]_{\mathfrak{g}} \otimes f g
$$

\mathfrak{g} finite-dimensional simple
\Longrightarrow loop algebra has unique non-trivial central extension $\mathfrak{g}^{(1)}$:

$$
0 \rightarrow \mathbb{C} \rightarrow \mathfrak{g}^{(1)} \rightarrow \mathfrak{g}_{\text {loop }} \rightarrow 0
$$

called the untwisted affine Lie algebra associated to \mathfrak{g}
Lie brackets, for K suitably normalized element of the center:

$$
\begin{aligned}
& {[x \otimes f, y \otimes g]:=[x, y]_{\mathfrak{g}} \otimes f g-\kappa_{\mathfrak{g}}(x, y) \operatorname{Res}_{t=0}\left(f \frac{\mathrm{~d} g}{\mathrm{~d} t}\right) K} \\
& {[K, \cdot]=0}
\end{aligned}
$$

$\mathfrak{g}^{(1)}$ shares many properties of \mathfrak{g}
in particular:

- triangular decomposition
- (generalized) Cartan matrix / Dynkin diagram
\mathfrak{g} naturally embedded in $\mathfrak{g}^{(1)}$ as the 'zero mode' subalgebra $\{x \otimes 1\}$

WZW vertex algebras

Def.: WZW vertex algebra $\mathcal{V}(\mathfrak{g}, k)$

Input data:

- finite-dimensional simple Lie algebra \mathfrak{g}
- $k \in \mathbb{C}$

Construction:

- set $\quad \tilde{\mathfrak{g}}_{+}:=\mathfrak{g} \llbracket t \rrbracket \oplus \mathbb{C} K \quad$ (Lie subalgbra of $\mathfrak{g}^{(1)}$)
- one-dimensional $\tilde{\mathfrak{g}}_{+}$-module $N \cong \mathbb{C}: \mathfrak{g} \llbracket t \rrbracket N=0, K=k i d_{N}$
- define space of states as induced $\mathfrak{g}^{(1)}$-module:

$$
\mathcal{V}:=U\left(\mathfrak{g}^{(1)}\right) \otimes_{U\left(\tilde{\mathfrak{g}}_{+}\right)} N
$$

then

$$
\begin{aligned}
\mathcal{V} \cong U\left(\tilde{\mathfrak{g}}_{-}\right)|0\rangle \quad \text { with } \quad \tilde{\mathfrak{g}}_{-} & =\mathfrak{g} \llbracket t^{-1} \rrbracket \\
|0\rangle & =1 \otimes 1 \in U\left(\mathfrak{g}^{(1)}\right) \otimes N
\end{aligned}
$$

- vertex operators: set $x \otimes t^{n}=: x_{n}$ and

$$
\begin{aligned}
& Y\left(x_{-1}|0\rangle ; z\right):=x(z) \equiv \sum_{n \in \mathbb{Z}} x_{n} z^{-n-1} \\
& Y\left(x_{-n}|0\rangle ; z\right):=\partial_{z}^{n-1} x(z) \quad \text { for } n>0 \\
& Y\left(x_{-1} y_{-1}|0\rangle ; z\right):=: x(z) y(z): \quad \ldots
\end{aligned}
$$

Theorem: this defines a conformal vertex algebra with Virasoro vector

$$
\begin{aligned}
& \mid \text { vir }\rangle=\frac{1}{2\left(k+h^{\vee}\right)} \sum_{a}:\left(\tau^{a}\right)_{-1}\left(\tau_{a}\right)_{-1}: \\
& \text { and central charge } c(\mathfrak{g}, k)=\frac{k \operatorname{dim}(\mathfrak{g})}{k+h^{\vee}}
\end{aligned}
$$

here $h^{\vee}=$ dual Coxeter number of \mathfrak{g} and $\left\{\tau^{a}\right\},\left\{\tau_{a}\right\}$ dual bases of \mathfrak{g}

Theorem:

with $Y\left(x_{-1}|0\rangle ; z\right)$ as prescribed above, the extension to all of \mathcal{V} is completely determined by the requirement to obtain a vertex algebra

NB : terminology "WZW":
corresponding CFT models have a realization as sigma models, with Wess-Zumino term, on group manifolds G (G has the compact real form of \mathfrak{g} as its Lie algebra)

Vertex algebra modules

the fields in \mathcal{V} do not exhaust the fields in the theory others are obtained via rep's of \mathcal{V}

Def.: module M over a vertex algebra \mathcal{V}
Data:

- space of states: $\mathbb{Z}_{\geq 0}$-graded complex vector space $M=\bigoplus_{n \geq 0} M_{(n)}$
- translation operator: grade-1 linear map $T_{M}: M \rightarrow M$
- representation map: linear map

$$
Y_{M}: \mathcal{V} \rightarrow \operatorname{End}(M) \llbracket z, z^{-1} \rrbracket
$$

Axioms:

- vacuum vector corresponds to identity map: $Y_{M}(|0\rangle ; z)=i d_{M}$
- rep map respects the grading: $a_{m}\left(M_{(p)}\right) \subseteq\left(M_{(p-m)}\right)$ if $a \in V_{(n)}$
- T_{M} implements infinitesimal translations: $\left[T_{M}, Y_{M}(v ; z)\right]=\partial_{z} Y_{M}(v ; z)$
- representation property:

$$
Y_{M}\left(v_{1} ; z_{1}\right) Y_{M}\left(v_{2} ; z_{2}\right)=Y_{M}\left(Y\left(v_{1} ; z_{1}-z_{2}\right) v_{2} ; z_{2}\right)
$$

modules exist:
$M_{0}:=\mathcal{V}$ is a \mathcal{V}-module - the vacuum module - with Y as rep map (non-trivial issue: rep property follows from locality)

Def.: module M over a conformal vertex algebra \mathcal{V}
module over \mathcal{V} as a vertex algebra subject to additional axiom:

- for any $u \in M_{(n)}$,

$$
L_{0} u=\left(\Delta_{M}+n\right) u \quad \text { for some } \Delta_{M} \in \mathbb{C}
$$

Δ_{M} is called the conformal weight of M
$M_{0}=\mathcal{V}$ is also a module in this conformal sense
rep property for $v=\mid$ vir \rangle
\Longrightarrow any \mathcal{V}-module M is also a Vir-module, with $C=c i d_{M}$
L_{0} is diagonalizable, with eigenvalues $\Delta_{M}+n$ for $n \in \mathbb{Z}_{\geq 0}$
can thus define formal character of M :

$$
\chi_{M}(\tau):=\operatorname{tr}_{M} \exp \left[2 \pi \mathrm{i} \tau\left(L_{0}-\frac{c}{24}\right)\right]
$$

with τ a formal parameter

WZW vertex algebra modules

rep property for $v=x_{-1}|0\rangle$
\Longrightarrow any $\mathcal{V}(\mathfrak{g}, k)$-module M is also a $\mathfrak{g}^{(1)}$-module, with $K=k$ id ${ }_{M}$ in fact:
irreducible $\mathcal{V}(\mathfrak{g}, k)$-module \Longrightarrow irreducible highest weight $\mathfrak{g}^{(1)}$-module for generic $k \in \mathbb{C}$: Verma module
$\chi_{M}=$ 'Vir-specialized' $\mathfrak{g}^{(1)}$-character of M
for $k \in \mathbb{Z}_{>0}$: integrable $\mathfrak{g}^{(1)}$-modules
behave in many respects as finite-dimensional \mathfrak{g}-modules thus for $k \in \mathbb{Z}_{>0}$ only deal with easy part of rep theory of $\mathfrak{g}^{(1)}$
for fixed $k \in \mathbb{Z}_{>0}$, only finitely many i.h.w. $\mathfrak{g}^{(1)}$-modules:
highest \mathfrak{g}-weight λ satisfying

$$
\left(\lambda, \alpha^{(i) \vee}\right) \in \mathbb{Z}_{\geq 0} \quad \text { for } i=1,2, \ldots, \operatorname{rk}(\mathfrak{g})
$$

and

$$
\left(\lambda, \theta^{\vee}\right) \leq k
$$

Concretely for $\mathfrak{g}=A_{1} \quad$ (standard normalization: λ twice the spin):

$$
\lambda \in \mathbb{Z}, \quad 0 \leq \lambda \leq k
$$

Rational vertex algebras

origin of special properties for $k \in \mathbb{Z}_{>0}$: $\mathcal{V}(\mathfrak{g}, k)$ is rational

Def.: rational (conformal) vertex algebra
a vertex algebra for which every module is a direct sum of irreducible modules
equivalent technical definition available (possibly slightly more restrictive)
properties of rational \mathcal{V} :

- subspaces $M_{(n)}$ of \mathcal{V}-module M automatically finite-dimensional - more important:
\mathcal{V} has, up to isomorphism, only finitely many irreducible modules

Disclaimer: from now on largely restrict to the rational case
common claim / expectation:
rational case serves as natural starting point for general case unfortunately:
in various respects general CFT much more complicated than RCFT however:
indeed RCFT relevant in many applications

CONFORMAL BLOCKS

Local vs global implementation of symmetries

heuristically,
correlators \sim vacuum expectation values of products of field operators
here: • 'product of field operators' = radially ordered product

- 'vacuum expectation value' \sim some invariant

Question: invariant w.r.t. what?
In particular: correlator should depend on position of insertion points p_{i} of the fields
\leadsto identify formal variable z_{i} with a local complex coordinate at p_{i}
Also: correlator should depend on global properties of the surface X \leadsto specify now: X compact Riemann surface (with punctures) more specifically: a smooth projective complex curve $\mathrm{X} \equiv C$ and do not just want correlator for one choice of insertion points $\left\{p_{i}\right\}$ and moduli (of complex structures) of C,
but rather its dependence on these data when they are varied
the vertex algebra itself only tells how symmetries act locally on C
to obtain global implementation of the symmetries:

- for general \mathcal{V}, to work with sheaves of vertex algebras already their construction is beyond the scope of these lectures
- much simpler construction when \mathcal{V} comes from a Lie algebra, in particular for Heisenberg and WZW cases can indeed be formulated in terms of rep's of the Lie algebra
technical reason for simplifications: must keep track of the effects ol local coordinate changes and in Heisenberg and WZW cases \mathcal{V} can be generated from a small subspace that is closed under changes of local coordinates

Preview: Correlators \sim Blocks

some aspects of the outcome:
do not get a function on the space \mathcal{M} of moduli of C and locations of insertion points, but rather a multi-valued function: a section of a (generically) non-trivial vector bundle on \mathcal{M} called the bundle of conformal blocks or bundle of chiral blocks fiber over a point of \mathcal{M} : the vector space of conformal/chiral blocks the fibers are finite-dimensional (at least for rational theories)

The ingredients in the WZW case

- assume $k \in \mathbb{Z}_{>0}$ (but some results apply to general k) Ingredients:
- i.h.w. $\mathfrak{g}^{(1)}$-modules \mathcal{H}_{λ} with highest \mathfrak{g}-weight $\lambda \in I$ and level k
- ordered m-tuples $\overrightarrow{\mathcal{H}} \equiv \overrightarrow{\mathcal{H}}_{\vec{\lambda}}$ of such modules same symbol also for Cartesian product and for tensor product / \mathbb{C}
- algebraic dual $(\overrightarrow{\mathcal{H}})^{*}$
- finite-dimensional moduli space \mathcal{M} of smooth projective curves C of genus g with m points $p_{1}, \ldots p_{m}$ marked by $\lambda_{1}, \ldots, \lambda_{m} \in I$ points in \mathcal{M} written as $(C, \vec{p}, \vec{\lambda})$
- infinite-dimensional extended moduli space $\mathcal{M}_{\text {ext }}$ of \ldots... and a choice of a local coordinate ξ_{i} around each p_{i}
- natural projection $\pi: \mathcal{M}_{\mathrm{ext}} \rightarrow \mathcal{M}, \quad(C, \vec{p}, \vec{\lambda}, \vec{\xi}) \mapsto(C, \vec{p}, \vec{\lambda})$
- Lie group \mathcal{U} of local coordinate changes:

$$
\left.\mathcal{U}:=\{u \in \mathbb{C} \llbracket z\rceil \mid u(0)=0, u^{\prime}(0) \neq 0\right\}
$$

- natural action of \mathcal{U} on $\mathcal{M}_{\text {ext }}: \vec{u}(C, \vec{p}, \vec{\lambda}, \vec{\xi})=(C, \vec{p}, \vec{\lambda}, \vec{\xi} \circ u)$ thereby $\mathcal{M}_{\text {ext }}$ is a \mathcal{U}^{m}-principal bundle over \mathcal{M}
- $\mathcal{F} \equiv \mathcal{F}(C, \vec{p})$: space of functions holomorphic on $C \backslash \vec{p}$ and with at most a finite order pole at each p_{i}
- Lie algebra $\mathfrak{g} \otimes \mathcal{F} \equiv \mathfrak{g} \otimes_{\mathbb{C}} \mathcal{F}$ with Lie bracket like for $\mathfrak{g}_{\text {loop }}$:

$$
[x \otimes f, y \otimes g]:=[x, y]_{\mathfrak{g}} \otimes f g
$$

also recall: $x_{n}=x \otimes t^{n}$

The construction in the WZW case

Construction:
(co-) invariants with respect to natural action of $\mathfrak{g} \otimes \mathcal{F}$ on $\overrightarrow{\mathcal{H}}$ and $\overrightarrow{\mathcal{H}}^{*}$

- consider a homogeneous element $x \otimes f$
- expand f in local coordinates around each $p_{i} \leadsto m$ Laurent series

$$
f^{(i)}\left(\xi_{i}\right)=\sum_{n \gg-\infty} f_{n}^{(i)} \xi_{i}^{n}
$$

- set

$$
\tilde{x}\left(f ; p_{i}\right):=\sum_{n} f_{n}^{(i)} x_{n}
$$

(may be regarded as element of $\mathfrak{g}_{\text {loop }}$ and thus of $\mathfrak{g}^{(1)}$ resp. $U\left(\mathfrak{g}^{(1)}\right)$)

- $\mathfrak{g} \otimes \mathcal{F}$ acts on $\overrightarrow{\mathcal{H}}=\mathcal{H}_{\lambda_{1}} \otimes \cdots \otimes \mathcal{H}_{\lambda_{m}}$ as

$$
\sum_{i=1}^{m} \mathbf{1} \otimes \cdots \otimes \mathbf{1} \otimes R_{\lambda_{i}}\left(\tilde{x}\left(f ; p_{i}\right)\right) \otimes \mathbf{1} \otimes \cdots \mathbf{1}
$$

(i.e. in short: $y \in \mathfrak{g} \otimes \mathcal{F}$ acts on $\mathcal{H}_{\lambda_{i}}$ via expanding y in local coo's)

- Def.: vector space of conformal blocks
associated to a point in \mathcal{M} : the space of invariants

$$
B(C, \vec{p}, \vec{\lambda}):=\left(\overrightarrow{\mathcal{H}}^{*}\right)^{\mathfrak{g} \otimes \mathcal{F}}
$$

- Theorem: equivalently, the space of $\mathfrak{g} \otimes \mathcal{F}$-coinvariants

$$
\overrightarrow{\mathcal{H}} /[(\mathfrak{g} \otimes \mathcal{F}) U(\mathfrak{g} \otimes \mathcal{F}) \overrightarrow{\mathcal{H}}]=B(C, \vec{p}, \vec{\lambda})^{*}
$$

in the original space $\overrightarrow{\mathcal{H}}$
invariants in the dual space $\overrightarrow{\mathcal{H}}^{*}$ just turns out to be the right thing but for actual calculations preferable to work with coinvariants in $\overrightarrow{\mathcal{H}}$

Remarks:

- in algebraic geometry, conformal blocks correspond to holomorphic sections in line bundles over moduli spaces (via infinite-dimensional Borel-Weil-Bott theory)
- result depends actually not on a point in \mathcal{M}, but on $\mathcal{M}_{\text {ext }}$: associate to a point of $\mathcal{M}_{\text {ext }}$ a subalgebra \mathfrak{g}_{m} in direct sum $\left(\mathfrak{g}^{(1)}\right)^{m}$ for different choices of local coo's get non-identical subalgebras, but each isomorphic to $\mathfrak{g} \otimes \mathcal{F}$
- however, via \mathcal{V} ir have a natural action of \mathcal{U} on these subalgebras and thus on the invariants
\Longrightarrow conformal blocks transform covariantly under \mathcal{U}

More on the WZW case

combine rep theory and algebraic geometry tools
\Longrightarrow can describe the bundles of WZW blocks quite explicitly but details complicated
one easy example: 2 -point blocks on $C=\mathbb{P}^{1}$:

- with standard coordinate w
and insertion points at $w=0$ and $w=\infty$, have $\mathcal{F}=\mathbb{C}\left[w, w^{-1}\right]$
- $x \otimes w^{n}$ acts as $x_{n} \otimes \mathbf{1}+\mathbf{1} \otimes x_{-n}$
- space of invariants $\cong \mathbb{C}$ for $\lambda_{2}=\lambda_{1}^{+}$, else zero
similar for \mathbb{P}^{1} with $m>2$ insertion points at finite values w_{i} of w : with local coordinates $w-w_{i}$ a basis for \mathcal{F} is

$$
\mathcal{B}_{\mathcal{F}}=\left\{w^{0}\right\} \cup \bigcup_{i=1}^{m}\left\{\left(w-w_{i}\right)^{n} \mid n \in \mathbb{Z}_{<0}\right\}
$$

NB: what about the level?
$\mathfrak{g} \otimes \mathcal{F}$ has central extension s.t. $\mathcal{H}_{\lambda_{i}}$ are modules individually with eigenvalues (depending on k) adding up to 0 (residue theorem) arises naturally when checking that $\overrightarrow{\mathcal{H}}$ indeed furnishes a $\mathfrak{g} \otimes \mathcal{F}$-module only works if all $\mathfrak{g}^{(1)}$-modules $\mathcal{H}_{\lambda_{i}}$ have the same level
further important result: factorization allows to relate arbitrary blocks to the 3 -point blocks on \mathbb{P}^{1} crucial in proof of WZW Verlinde formula

Chiral and full CFT

recall: two basic ingredients of CFT:

- the surface X on which the theory is defined
- correlators - the prime quantities of interest
up to now:
- X a complex curve C
- correlators are conformal blocks, thus (in general) multivalued in most applications want instead:
- world sheet X can have a boundary, and it may be non-oriented
- correlators are functions of the moduli of X
and of the positions of field insertions
in short: previously had chiral CFT - now want full CFT
Why chiral CFT?
- does have applications
- symmetries are a purely chiral issue
- only (known) way to understand full CFT is via chiral CFT

> "full CFT is obtained by combining two chiral halves"
can be stated more concretely: chiral RCFT $\leadsto \leadsto$ modular tensor category \mathcal{C}
full RCFT $\leftrightarrow \leadsto$ modular tensor category $\mathcal{C} \&$ one specific object in \mathcal{C}

- TO BE ELABORATED !! -

The bulk state space

from now on:

- RCFT
- regard $\mathcal{C}=\mathcal{R} \operatorname{ep}(\mathcal{V})$ as abstract category
- regard conformal blocks as abstract vector spaces
two chiral halves \Longrightarrow
relevant space of (bulk) states is object in $\mathcal{C} \otimes \overline{\mathcal{C}}$, not in \mathcal{C} :

$$
\mathcal{H}_{\text {bulk }}=\bigoplus_{i, j \in I} Z_{i, j} U_{i} \times U_{j}
$$

($\overline{\mathcal{C}}: \mathcal{C}$ with opposite 'braiding' and 'twist')
unique vacuum $\Longrightarrow Z_{0,0}=1$
What about the other multiplicities $Z_{i, j}$?
$Z_{i, j}$ are also coefficients of the torus partition function Z (zero-point correlator for X a torus)

$$
\begin{aligned}
& Z(\tau)=\sum_{i, j \in I} Z_{i, j} \chi_{i}(\tau) {\left[\chi_{j}(\tau)\right]^{*} } \\
& \quad \chi_{i}=\text { character of } U_{i} \text { as a } \mathcal{V} \text {-module }
\end{aligned}
$$

- depends on conformal structure of the torus \sim complex structure \leadsto modular invariance: $Z(\tau)=Z(\tau+1)=Z\left(-\tau^{-1}\right)$

Two obvious 'modular invariants':

$$
Z_{i, j}=\delta_{i, j}=: Z_{i, j}^{\text {diag }} \quad \text { and } \quad Z_{i, j}=\delta_{i, j \vee}=: Z_{i, j}^{\text {c.c. }}
$$

Warning: $\quad \chi_{i} \vee=\chi_{i} \quad$ (as Vir-specialized characters)
but can be natural to include further variables
anyhow, bulk state spaces for $Z^{\text {diag }}$ and $Z^{\text {c.c. }}$ differ (in general)

Modular invariants

classifying modular invariant combinations of characters for given \mathcal{C} (subject to $Z_{i, j} \in \mathbb{Z}$ and $Z_{0,0}=1$)
was major business, historically
one early result: A-D-E classification for rational $\mathfrak{s l}_{2}$ WZW theories
But:
modular invariance of Z is necessary, but not sufficient
Indeed, many unphysical modular invariants are known
not describing a physically sensible torus partition function

Example:

- charge conjugation invariant $Z^{\text {c.c. }}$ always physical
- true diagonal invariant $Z^{\text {diag }}$ not physical for all RCFTs
(though very often - trivially whenever $i^{\vee}=i$ for all $i \in I$)

The complex double and the connecting manifold

full CFT comes from chiral CFT
\Longrightarrow for any world sheet X need associated complex curve C on which the chiral CFT lives
natural prescription, uniformly for all world sheets: complex double

$$
\begin{aligned}
& C=\widehat{\mathrm{X}}:=(\mathrm{X} \times\{-1,1\}) / \sim \\
& \quad \text { with }(x, 1) \sim(x,-1) \text { for } x \in \partial \mathrm{X}
\end{aligned}
$$

- Conversely: $\mathrm{X}=\widehat{\mathrm{X}} /\langle\sigma\rangle$
with σ an orientation-reversing involution
- $\widehat{\mathrm{X}}$ is naturally the boundary of a three-manifold:
the connecting manifold

$$
\begin{aligned}
\mathrm{M}_{\mathrm{X}} & : \\
& =(\mathrm{X} \times[-1,1]) / \sim \\
& \text { with }(x, t) \sim(x,-t) \text { for } x \in \partial \mathrm{X} \text { and all } t \in[-1,1]
\end{aligned}
$$

- Examples:

X closed orientable $\Longrightarrow \widehat{\mathrm{X}}=\mathrm{X} \sqcup-\mathrm{X}, \quad \mathrm{M}_{\mathrm{X}}=\mathrm{X} \times[-1,1]$
$\mathrm{X}=$ disk $\Longrightarrow \widehat{\mathrm{X}}=S^{2}, \quad \sigma: w \mapsto 1 / w^{*}, \quad \mathrm{M}_{\mathrm{X}}=3$-ball
$\mathrm{X}=\mathbb{R P}^{2}\left(\right.$ 'cross cap') $\Longrightarrow \widehat{\mathrm{X}}=S^{2}, \quad \sigma: w \mapsto-1 / w^{*}$
X annulus / Möbius strip / Klein bottle $\Longrightarrow \widehat{\mathrm{X}}$ a torus
NB: insertion points come with local coordinates preferable to work instead with (germs of) oriented arcs alternatively: around insertion point cut out a little disk D with parametrized ∂D

Idea:
construct correlators with the help of M_{X}, not only $\widehat{\mathrm{X}}$

Note:

- M_{X} contains no additional topological information:

X a deformation retract of M_{X}
(only 'thicken' the world sheet a bit)
X naturally embedded: $\quad \imath: \mathrm{X} \rightarrow \mathrm{M}_{\mathrm{X}}, \quad x \mapsto(x, 0)$

- to relate chiral theory on $\widehat{\mathrm{X}} \subset \mathrm{M}_{\mathrm{X}}$ to full theory on $\mathrm{X} \sim \imath(\mathrm{X}) \subset \mathrm{M}_{\mathrm{X}}$ need "something in between"
- use a 3-dim topological field theory (TFT) living on M_{X} 'topological': carries no dynamical information
- indeed a modular tensor category determines uniquely a 3 -d TFT naturally involves ribbons and ribbon networks labeled ('decorated') by objects of \mathcal{C}

Coupons - Bulk fields as morphisms

adapt terminology:
space of bulk fields $\Phi_{i, j}^{\alpha}$ of type $i, j-Z_{i, j}$-dimensional vector space i, j chiral labels: correspond to arcs on $\partial_{ \pm} \mathrm{M}_{\mathrm{X}}$ connect them to $\imath(\mathrm{X})$ by oriented ribbons labeled by U_{i} resp. U_{j} running essentially along connecting intervals and 'stick them together' on X (from now on suppress \imath)

- simplest possibility:
let the ribbon run through' - allows only for $Z^{\text {c.c. }}$
- better:
at arc in X place (a coupon labeled by) a suitable morphism of \mathcal{C}
- combining the i - and j-ribbons to 'nothing' -
i.e. the unvisible ribbon decorated by $\mathbf{1}$ - again amounts to $Z^{\text {c.c. }}$:

$$
\operatorname{Hom}\left(U_{i} \otimes U_{j}, \mathbf{1}\right) \cong \delta_{i, j^{\vee}} \mathbb{C}
$$

Bold idea:

- implement new ingredient: (topological) defect lines on X (arise e.g. from: frustration line in the Ising model, disorder fields)
- insertion point/arc sits on a defect line
- describe line as a ribbon (flat in X) decorated by object X of \mathcal{C}
- thus coupon labeled by morphism

$$
\begin{array}{ll}
& f \in \operatorname{Hom}\left(U_{i} \otimes X \otimes U_{j}, X\right) \\
\text { resp. } & f \in \operatorname{Hom}\left(U_{i} \otimes X \otimes U_{j}, X^{\prime}\right)
\end{array}
$$

Bulk fields vs defect fields

Objections:

- Can this possibly work?

Yes! - provided that restrict the allowed objects X as well as morphisms
and restrictions have a natural rep theoretic explanation

- For bulk fields one does not see any defect line, ok?

Yes! - but:

- bulk fields (and disorder fields) are special types of defect fields
- there is an invisible defect line A
similarly as the object $\mathbf{1}$ of \mathcal{C} is invisible
- bulk fields connect A to A, i.e.

$$
\Phi_{i, j}^{\alpha} \in \operatorname{Hom}\left(U_{i} \otimes A \otimes U_{j}, A\right)
$$

(in fact $\Phi_{i, j}^{\alpha}$ lies in a certain subspace $\operatorname{Hom}_{A \mid A}\left(U_{i} \otimes^{+} A \otimes^{-} U_{j}, A\right)$)
crucial property of A as an object of \mathcal{C} :
A is a simple symmetric special Frobenius algebra in \mathcal{C}

$\mathcal{R e p}(\mathcal{V})$ AND TENSOR CATEGORIES

$\mathcal{R} \operatorname{ep}(\mathcal{V})$ as abelian category

modules over a (conformal) vertex algebra \mathcal{V} form the representation category $\mathcal{R} \operatorname{ep}(\mathcal{V})$ of \mathcal{V} :

- for any two modules M and M^{\prime}
have a space of intertwiners / homomorphisms from M to M^{\prime} : maps $f: M \rightarrow M^{\prime}$ compatible with all properties of M, M^{\prime}
e.g. linear, compatible with the grading and with the action of \mathcal{V}
- denote set of homomorphisms from M to M^{\prime} by $\operatorname{Hom}\left(M, M^{\prime}\right)$
- any $f \in \operatorname{Hom}\left(M, M^{\prime}\right)$ and $g \in \operatorname{Hom}\left(M^{\prime}, M^{\prime \prime}\right)$
can be composed to $g \circ f \in \operatorname{Hom}\left(M, M^{\prime \prime}\right)$
- $\operatorname{Hom}(M, M)$ contains the identity map id_{M}
$\Longrightarrow \mathcal{V}$-modules form a category $\mathcal{R} \operatorname{ep}(\mathcal{V})$ with \mathcal{V}-modules as objects and homomorphisms as morphisms
- notion of kernel and cokernel of a morphism, behaving as usual
- $O:=\{0\}$ is a (boring) \mathcal{V}-module
and $\operatorname{Hom}(M, O) \cong\{0\} \cong \operatorname{Hom}(O, M)$ for any M
- morphism sets are \mathbb{C}-vector spaces and composition of morphisms is \mathbb{C}-bilinear
$\Longrightarrow \mathcal{R} \operatorname{ep}(\mathcal{V})$ is a \mathbb{C}-linear abelian category

$\mathcal{R} \operatorname{ep}(\mathcal{V})$ as monoidal category

vertex algebras and their modules are relatively complicated $~$ below suppress many details in some respects close to rep's of simple and affine Lie algebras one important modification: under some mild conditions on \mathcal{V}
have tensor product $M \otimes M^{\prime}$ of \mathcal{V}-modules M, M^{\prime} which is again a \mathcal{V}-module
but unlike for Lie algebras \mathfrak{l} not given by $M \otimes_{\mathbb{C}} M^{\prime}$ as vector space (do not have analogue of the Hopf algebra $U(\mathfrak{l})$)

NB: tensor product of $\mathfrak{g}^{(1)}$-modules of levels k_{1} and k_{2} has level $k_{1}+k_{2}$ indeed construction rather involved:

- define intertwining operator for any triple $M, M^{\prime}, M^{\prime \prime}$ in a way not using notion of tensor product
(analogue for Lie algebras:
intertwiner from $M \otimes M^{\prime}$ to $M^{\prime \prime}$ as linear map $j: M \rightarrow \operatorname{Hom}_{\mathbb{C}}\left(M^{\prime}, M^{\prime \prime}\right)$ with $x j(m) m^{\prime}=j(x m) m^{\prime}+j(m) x m^{\prime}$ for $\left.x \in \mathfrak{g}, m \in M, m^{\prime} \in M^{\prime}\right)$
- define $M \otimes M^{\prime}$ to $M^{\prime \prime}$ as pair consisting of
module \tilde{M} and intertwining operator of type M, M^{\prime}, \tilde{M}
such that a universal property holds w.r.t. arbitrary intertwining operators of type $M, M^{\prime}, M^{\prime \prime}$
then intertwining operator corresponds indeed to space of intertwiners between $M \otimes M^{\prime}$ and $M^{\prime \prime}$

Further:

- tensoring from the left or right with M is a functor from $\mathcal{R} \operatorname{ep}(\mathcal{V})$ to itself: compatibly maps morphisms to morphisms
- tensor product is associative up to isomorphism and associativity isomorphisms satisfy the pentagon identity i.e. equality of the two possible composite morphisms

$$
M_{1} \otimes\left(M_{2} \otimes\left(M_{3} \otimes M_{4}\right)\right) \rightarrow\left(\left(M_{1} \otimes M_{2}\right) \otimes M_{3}\right) \otimes M_{4}
$$

schematically,

$$
\begin{aligned}
\bullet(\bullet(\bullet \bullet)) & \rightarrow \bullet((\bullet \bullet) \bullet) \rightarrow(\bullet(\bullet \bullet)) \bullet \\
& =\bullet((\bullet \bullet) \bullet) \bullet \\
& (\bullet(\bullet)) \rightarrow(\bullet \bullet)(\bullet \bullet) \rightarrow((\bullet \bullet) \bullet) \bullet
\end{aligned}
$$

- $M_{0} \otimes M$ and $M \otimes M_{0}$ are isomorphic to M and the 'left and right unit isomorphisms' satisfy the triangle identity for $M_{1} \otimes\left(\mathcal{V} \otimes M_{2}\right) \rightarrow M_{1} \otimes M_{2}$:

$$
\bullet(\circ \bullet) \rightarrow \bullet \bullet=\bullet(\circ \bullet) \rightarrow(\bullet \circ) \bullet \rightarrow
$$

$\Longrightarrow \mathcal{R} \operatorname{ep}(\mathcal{V})$ is a monoidal category $=$ tensor category

Coherence theorem: pentagon and ensure that any two morphisms between tensor products with identical factors formed by associativity and left/right unit isomorphisms are equal
\Longrightarrow every monoidal category equivalent to a strict one in which associativity and left/right unit morphisms are identity morphisms
from now on:
tacitly replace any tensor category by an equivalent strict one

Interlude: Graphical calculus

may represent morphisms $f \in \operatorname{Hom}(U, V)$ graphically as

(see the file for the 2nd part of the lectures)

in particular $i d_{U}$ as
(see the file for the 2nd part of the lectures)
the composition of two morphisms then corresponds to
(see the file for the 2nd part of the lectures)
in a (strict) monoidal category
can also represent the tensor product of morphisms:
(see the file for the 2nd part of the lectures)
the identity morphism of the tensor unit $\mathbf{1}$ is invisible

$\mathcal{R} \operatorname{ep}(\mathcal{V})$ as ribbon category

with some additional assumptions on \mathcal{V} have in addition:

- for any $M, \exp \left(-2 \pi \mathrm{i} L_{0}\right)$ furnishes an isomorphism in $\operatorname{Hom}(M, M)$ called twist of M and denoted by θ_{M}
- tensor product actually depending on formal variable z, which is then regarded as a complex number and set to 1 keeping z, and analytically continuing from $z=1$ to $z=-1$, followed by an application of a shift by 1 , yields isomorphisms

$$
c_{M, M^{\prime}}: \quad M \otimes M^{\prime} \rightarrow M^{\prime} \otimes M
$$

corresponds to a flip $v \otimes v^{\prime} \mapsto v^{\prime} \otimes v$ in $M \otimes_{\mathbb{C}} M^{\prime}$, but iteration does not give the identity morphism called braiding isomorphisms

- the restricted dual space $M^{\vee} \cong \bigoplus_{n}\left(M_{(n)}\right)^{*}$ is again a \mathcal{V}-module (called contragredient to M)
and there are morphisms
$b_{M} \in \operatorname{Hom}\left(M_{0}, M \otimes M^{\vee}\right)$ and $d_{M} \in \operatorname{Hom}\left(M^{\vee} \otimes M, M_{0}\right)$
called coevaluation and evaluation, or duality morphisms
- the twist, braiding and duality morphisms satisfy relations analogous to ribbons in 3-space
$\Longrightarrow \mathcal{R} e p(\mathcal{V})$ is a ribbon category

$\mathcal{R} \operatorname{ep}(\mathcal{V})$ as modular tensor category

now finally assume that \mathcal{V} is rational
then:

- $M_{0}=\mathcal{V}$ is irreducible
- every module is isomorphic to a finite direct sum of irreducibles
- up to isomorphism there are only finitely many irreducible modules $U_{i}, \quad i \in I$
- the $|I| \times|I|$-matrix with entries

$$
s_{i, j}:=\left(d_{U_{j}} \otimes \tilde{d}_{U_{i}}\right) \circ\left[i d_{U_{i}^{\vee}} \otimes\left(c_{U_{i}, U_{j}} \circ c_{U_{j}, U_{i}}\right) \otimes i d_{U_{j}^{\vee}}\right] \circ\left(\tilde{b}_{U_{j}} \otimes b_{U_{i}}\right)
$$

is non-degenerate
$\Longrightarrow \mathcal{R} e p(\mathcal{V})$ is a modular tensor category

References - CFT

[C] J.L. Cardy, Conformal field theory and statistical mechanics, preprint 0807.3472
[DMS] P. di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory (Springer 1996)
[G] M.R. Gaberdiel, An introduction to conformal field theory, Rep. Prog. in Phys. 63 (2000) [hep-th/9910156]
[R] K.-H. Rehren,
Locality and modular invariance in $2 D$ conformal QFT, Fields Institute Commun. 30 (2001) [math-ph/0009004]
[Sc] A.N. Schellekens, Introduction to conformal field theory, Fortschr. Phys. 44 (1996)
[Se] G.B. Segal, The definition of conformal field theory, in: Topology, Geometry and Quantum Field Theory (Cambridge University Press 2004)
[St] Ya.S. Stanev, Two dimensional conformal field theory on open and unoriented surfaces, preprint hep-th/0112222

Vertex algebras

[FB] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, 2nd edition (AMS 2004)
[H] Y.-Z. Huang, Rigidity and modularity of vertex tensor categories, Commun. Contemp. Math. () [math. QA/0502533]
[Ka] V.G. Kac, Vertex Algebras for Beginners (AMS 1996)
[L] H.-s. Li, Representation theory and tensor product theory for vertex operator algebras, preprint hep-th/9406211

Tensor categories and 3-d TFT

[BK] B. Bakalov and A.A. Kirillov, Lectures on Tensor Categories and Modular Functors (AMS 2001)
[Ks] C. Kassel, Quantum Groups (Springer 1995)

TFT construction of CFT correlators

[FFRS] J. Fröhlich, J. Fuchs, I. Runkel, and C. Schweigert, Duality and defects in rational conformal field theory, Nucl. Phys. B 763 (2007) [hep-th/0607247]
[FRS] J. Fuchs, I. Runkel, and C. Schweigert, TFT construction of RCFT correlators I: Partition functions, Nucl. Phys. B 646 (2002) [hep-th/0204148]
[RFFS] I. Runkel, J. Fjelstad, J. Fuchs, and C. Schweigert, Topological and conformal field theory as Frobenius algebras, Contemp. Math. 431 (2007) [math.CT/0512076]
[SFR] C. Schweigert, J. Fuchs, and I. Runkel, Categorification and correlation functions in conformal field theory, in: ICM 2006 (EMS 2006), preprint math.CT/0602079

