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Topics

• Why CFT ?

• What is “CFT” ?

• Where does CFT live ?

• What is the goal ?

• What input is needed ?

[thus : a lot =⇒ restrict to a few selected topics ]
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Why CFT?

• Critical limit of lattice models in statistical mechanics

prototypical example: Ising model

Z2-valued variable s∈{±1} at each lattice point (‘spin up / down’)

nearest-neighbor ferromagnetic interaction

on a (say) cubic d-dim lattice.

Goal: (be able to) compute correlation functions

= expectation values / moments wrt the thermal partition function

Z ∼
∑

configurations

exp[− interaction energy(config.) / temperature ]

of products of suitable local observables

typically fall of exponentially→ correlation length(s)

at a critical point – fall off only power-like

=⇒ correlation length infinite / larger than size of the system

relevant here are critical points of second order phase transitions

Scaling limit: let lattice spacing go to zero and vary interaction strength

such that correlation length kept constant

limit defines a continuum field theory

under some mild assumptions on the interaction

can argue that this theory is conformal

for details see e.g. [C]
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Other areas :

• String theory

motion of a relativistic string in some D-dim space(-time) M

many aspects understood in terms of a QFT living on

the 2-dim surface swept out by the propagating string

embedding of this world sheet into M amounts to

interpreting coordinates on (a patch of) M as 2-dim fields

consistency =⇒ 2-dim QFT conformal

• Effectively 2-dim structures in condensed matter physics

e.g. quantum Hall effect

possibly high-Tc superconductivity

• Effectively 1+1-dim structures in condensed matter physics

e.g. Kondo effect or other impurities

• Critical percolation

• . . . . . . . . .

. . . . . . . . .

• Laboratory for QFT

• Fundamental physics ←→ Mathematics
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What is C FT? — Symmetries

roughly: CFT = quantum field theory with conformal symmetry

Conformal transformations

conformal transformations of R
d

/ (pseudo-)Riemannian d-dim manifold (space-time):

general coordinate transf preserving angle between any two vectors

equivalently: change space-time metric only by a local scale factor:

gµν(x) 7→ σ(x) gµν(x)

for infinitesimal reparametrization

xµ 7→ xµ + ε fµ(x) +O(ε2) ,

g being a 2nd-rank tensor means that

gµν 7→ gµν − ε ∂µfν − ε ∂νfµ +O(ε2)

=⇒ in flat space-time. requirement that δgµν(x)∝ gµν(x) amounts to

∂µfν + ∂νfµ = γ(x) gµν(x)

for some function γ

eliminate γ by contraction with g =⇒

d (∂µfν + ∂νfµ)− 2 gµν ∂ρf
ρ = 0 (1)

(necessary and sufficient)

Various further relations by suitably taking derivatives and contracting
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Infinitesimal transformations for d> 2

(1) =⇒ for d > 2 : ∂µ∂ν∂ρf
σ = 0

=⇒ fµ of at most second order in x

implement further restrictions

=⇒ independent infinitesimal conformal transformations are:

– translations: fµ constant

– dilatations (scalings): fµ = xµ

– rotations / boosts: fµ =
∑

ν mµ
ν xν with constant mµν = −mνµ

– special conformal transf.: fµ = cµ |x|2 − 2
∑

ν cνx
µxν

with cµ constant

translations and rotations are even isometries

dilatations only change the overall scale

corresponding differential operators (on functions):

translations : Pµ = ∂µ

rotations : Mµν = 1
2
(xµ∂ν − xν∂µ)

dilatations : D = xµ∂µ

special conformal transformations : Kµ = |x|2 ∂µ− 2 xµx
ν∂ν

form a basis of a real form of so(d+2,C)

so(p+1, q+1) for signature ((−)q, (+)p)

so(d,2) for Minkowski space
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Finite transformations in d> 2 Minkowski space

finite transformations: corresponding finite-dimensional Lie group

natural starting point: conformal group SO(d, 2)

e.g. dilatations: xµ 7→ ρ xµ , ds2 7→ ρ2 ds2

special conformal transformations:

xµ 7→ (1 + 2c · x + |c|2|x|2)−1 xµ + cµ|x|
2

ds2 7→ (1 + 2c · x + |c|2|x|2)−2 ds2

in particular: −c 7→ ∞ and space-like 7→ time-like

thus SO(d, 2) does not act properly on space-time,

and seems incompatible with causality

Resolution:

• SO(d, 2) ; simply-connected universal covering group

(also accounts for fact that in quantum theory get projective rep’s)

• Minkowski space ; a certain infinite covering

with topology of Sd−1 × R (“tube”)

similar issues arise for d = 2 — will be largely suppressed

partly because Minkowski-signature world sheets will not really be

of interest
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d = 2

d = 2 Minkowski space:

light cone coordinates x± := x0 ± x1 , ∂± := 1
2 (∂0 ± ∂1)

for f± := f0 ± f1, (1) reduces to ∂+f− = 0 = ∂−f+ , solved by

f+ = f+(x+) , f− = f−(x−) .

thus the finite conformal transformations are those of the form

x+ 7→ f+(x+) , x− 7→ f−(x−)

with independent real-valued functions f±.

analogously for Euclidean world sheet:

complex coordinate z = x1 + ix2

=⇒ Cauchy--Riemann equations for f

the finite conformal transformations are

z 7→ f(z)

with f an analytic function of z

=⇒ infinitely many independent infinitesimal transformations:

z 7→ z + ε zn+1 , n∈Z
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corresponding differential operators on functions:

ℓn = −zn+1 ∂z

span the Witt algebra : Lie algebra with

[ℓm, ℓn] = (m− n) ℓm+n

Quantum theory: need central extension

0 → C → Vir → W itt → 0

up to isomorphism, unique non-trivial central extension:

Virasoro algebra : standard basis {Lm |m∈Z} ∪ {C} with

[Lm, Ln] = (m− n) Lm+n + 1
12 (m3 −m) δm+n,0 C

[C, Ln] = 0

no central term for m = 0,±1

corresponding finite transformations: Möbius transformations

x 7→
ax + b

cx + d
a, b, c, d∈R , ad− bc = 1

resp.

z 7→
Az + B

Cz + D
A, B, C, D ∈ C , D = −A∗ , C = −B∗

|A|2 − |B|2 = 1

two copies, from x = x± =⇒ give so(1,2)⊕ so(1,2) ∼= so(2,2)

analogous transformations present for arbitrary d
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More symmetries

understanding this conformal symmetry is not sufficient

• can have (many) more symmetries

• need to implement symmetries not only geometrically

but also on “fields” / “physical states”

=⇒ more complicated structures, beyond Lie algebras

• world sheet in applications

not just the 2-d Minkowski space / complex plane

=⇒ symmetries realized in above form only in neighborhood

of a given field insertion (local cooordinates)

but also want ‘global’ implementation of symmetries

(account for presence of other fields

and for topological features of the world sheet)
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Where does CFT live ? — The world sheet

two important issues ( not present in conventional QFT ) :

• in applications (e.g. string theory)

need to consider simultaneously various possibilities

for the 2-dim space(-time) = the world sheet X

accordingly, may think of CFT in terms of functor from a category

of world sheets to vector spaces (reminiscent of 3-dim TFT functors)

NB: same paradigm used in recent work on generally covariant QFT

• do not specify all properties of X from the beginning

be prepared to assume different properties in different settings

common setting :

X a smooth 2-d manifold with a conformal structure

or possibly even with a definite choice of metric

here, in full generality, only assume :

X just a 2-dim topological manifold
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What is the goal ? — Compute correlators

basically: a correlator associates a number to a field configuration

NB: no particle picture, but still fields, which carry “charges”

analogue in electrostatics: to a configuration of electric point charges

associate the energy stored in the electric field

in CFT:

fields come as elements of vector spaces

=⇒

correlator = multilinear function from a collection of vector spaces to C
side remark: in electrostatics do not include self energy.

in QED include it, but requires renormalized perturbation theory

in contrast, in CFT can make exact statements and calculations

without having to resort to any form of perturbation theory
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Basic input

• symmetries

to be encoded in a suitable algebraic structure

then much of the theory amounts to use the rep theory of that structure

analogue in standard QFT:

particles as rep’s of the space-time symmetries (Poincaré group)

• “dynamics”

in CFT, no separate issue: include (almost) all symmetries

as well as all interactions compatible with them

• relevant concept(s) of fields

Basic tools

• vertex operator algebras and their rep’s

◦ simple and affine Lie algebras and some of their rep’s

• tensor categories, ribbon categories, ......

◦ 3-dim topological field theory

• algebra in tensor categories

◦ also (will not appear here): some geometry & analysis
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Message

in rational CFT can translate physical principles and ideas

in such a way into mathematical structures that

• precise statements can be made

• these statements can be proven

• the mathematical results allow to answer physical problems

including concrete numerical results for specific models
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CONFORMAL VERTEX ALGEBRAS
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Wightman axioms

Idea:

formalize Wightman axioms and operator product expansion

scale invariance =⇒ OPE make sense for arbitrary distances

Wightman axioms – in massaged form:

Data:

• space of states : infinite-dimensional complex vector space H

• vacuum vector |0〉 ∈ H

• rep U of space-time symmetry group G, e.g. Poincaré group, on H

• collection of localized/localizable fields which can ‘act’ on H

Axioms, roughly:

• covariance :

G acts on fields, in a way compatible with its action on their support

• invariance of vacuum :

U(g)|0〉= |0〉 for all g ∈G (thus e.g. lowest energy state)

• completeness : acting with all fields on |0〉 yields essentially all of H

e.g. for H a Hilbert space, a dense subspace

but: from now on, H just a vector space

• locality / causality :

fields with causally disconnected support commute
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Definition: Vertex algebra

can argue that adaptation to d = 2 conformal QFT

is captured by notion of “ conformal vertex algebra ”

in particular, completeness amounts to “ state-field correspondence ”

Def.: vertex algebra V

Data:

• space of states :

infinite-dimensional Z≥0-graded complex vector space V =
⊕

n≥0 V(n)

here: finite-dimensional homogeneous subspaces V(n)

• vacuum vector |0〉 ∈V(0)

• shift or translation operator : linear map T : V →V

• vertex operator map or state-field correspondence : linear map

Y : V → End(V)[[z, z−1]]

Warning: z a formal variable, not a local complex coordinate

for v ∈V call Y (v) the vertex operator or field associated to v

write Y (v) ≡ Y (v; z)

and (for a∈V(n)) Y (a; z) =:
∑

m∈Z
am z−n−m

call the linear maps am the Laurent modes of Y (a)

Warning: often do not include the “−n” in the exponent
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Axioms:

• the vacuum corresponds to the identity field: Y (|0〉; z) = idV

• the state-field correspondence respects the grading:

am(V(p)) ⊆ (V(p−m)) for a∈V(n)

• the term ‘state-field correspondence’ makes sense:

recover a state by applying the field to the vacuum for “z → 0 ”:

Y (v; z) |0〉 ∈ v + z V [[z]]

• T indeed implements infinitesimal translations:

[T, Y (v; z)] = ∂zY (v; z)

with ∂z ≡
∂
∂z

• the vacuum is translation invariant: T |0〉= 0

• locality : for any two v1, v2∈V there is N = N(v1, v2) ∈ Z≥0 s.t.

(z1− z2)
N [Y (v1; z1), Y (v2; z2)] = 0

as an element of End(V)[[z1, z
−1
1 , z2, z

−1
2 ]]

roughly, commutators can be singular at coinciding arguments

but are defined for arbitrary fields

and singularity is at most a finite-order pole

Note:

crucial that series extend infinitely in positive and negative powers
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Interlude: Formal power series

product of fields generally not defined

details need calculus of formal power series

e.g. can multiply any formal power series with a Laurent polynomial

typical examples of formal power series which allow to satisfy locality:

formal delta function δ(z− z′) :=
∑

n∈Z
zn (z′)−n−1

and its derivatives, which satisfy

(z− z′)n+1 ∂n
z′δ(z− z′) = 0

δ can be multiplied with any formal power series g, and

g(z) δ(z− z′) = g(z′) δ(z− z′)

locality

⇐⇒ commutator is finite sum of terms “ field× derivative of δ ”

Warning: 1
z− z′ is not directly a formal power series

but it becomes one via
1

z− z′
=

1

z

1

1− z′

z

and ‘ expand about z′

z
= 0 ’

then in particular
1

z− z′
6= −

1

z′− z

indeed 1

z− z′
+

1

z′− z
= δ(z− z′)
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Definition: Conformal vertex algebra

up to now conformal symmetry not assumed yet

to implement it: promote the shift operator T to a field T (z)

Def.: conformal vertex algebra V

a vertex algebra with one additional datum :

• the Virasoro vector : an element |vir〉 ∈ V(2)

set T (z) := Y (|vir〉; z) =:
∑

n∈Z

Ln zn−2

and additional axioms involving |vir〉 :

• L−1 = T

• L0 produces the grading: L0

∣∣
V(n)

= n idV(n)

and is semisimple

• L2 |vir〉 = c
2 |vir〉 for some c∈C

c is the called the central charge of V

Theorem:

the Laurent components Ln furnish a rep of Vir with C = c idV
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Remarks:

• various slightly different versions are in use, e.g.

distinguish ‘conformal vertex algebra’ from ‘vertex operator algebra’

these differences are irrelevant for the present purposes

• physics literature concept “chiral algebra”

amounts (when defined) to conformal vertex algebra

• T (z) is (one component / the chiral part of)

the energy-momentum tensor

• radially ordered product of two fields Y (u) and Y (v) :

defined via suitable analytic continuation of Y (Y (u; z)v; z′)

(z interpreted as complex number)

gives the physical notion of operator product expansion

of fields in the chiral algebra

• requiring L0 to be semisimple excludes ‘logarithmic’ CFT

• the span of all Laurent components of all fields Y (v)

has the structure of a Lie algebra

for generic vertex algebras the latter is not of much help,

but there are interesting vertex algebras in which one can reconstruct

V from a finite (small) number of fields

then much of the rep theory of V reduces to the one of the Lie algebra
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Example: Commutative vertex algebras

— a somewhat degenerate example —

let A be a unital commutative associative Z≥0-graded C-algebra

with finite-dimensional homogeneous subspaces

and a derivation T of grade 1

Then

Y (a; z) := µ(ezTa) ≡
∞∑

n = 0

T na zn

and |0〉 := unit element

gives a vertex algebra structure on A

which is commutative: N ≡ N(a, b) = 0 for all a, b∈A

every commutative vertex algebra is obtained this way

similarly for every vertex algebra for which N is bounded

this example is not relevant for CFT

in the following concentrate on special cases relevant to CFT:

V generated (via ∂z and : · : ) by finitely many fields Yi
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Example: Heisenberg vertex algebra

based on the Heisenberg Lie algebra:

basis {bn |n∈Z 6=0} ∪ {1} with relations

[bm, bn] = m δm+n,0 , [1, bn] = 0

Def.:

• space of states: Fock space = U−|0〉

with U− the universal enveloping algebra of span{bn |n∈Z<0}

• vacuum vector: defined by 1|0〉= |0〉 and bn|0〉= 0 for n > 0

thinking of bn<0 as formal variables and

of bn>0 as (scaled) derivatives w.r.t. b−n, |0〉 is the polynomial 1

• vertex operators:

Y (b−m1b−m2 · · · b−mk
|0〉; z) := const : ∂m1−1

z b(z) · · · ∂mk−1
z b(z) :

with b(z) :=
∑

n∈Z

bn z−n−1 = Y (b−1|0〉; z)

and normal ordering

:A(z) B(z′): := A(z)+ B(z′) + B(z′) A(z)−

with A(z)+ :=
∑

n≤−∆A
An z−n−∆A , A(z)− :=

∑
n>−∆A

An z−n−∆A

• Virasoro vector: |vir〉= 1
2 b−1b−1|0〉

Theorem: this gives a conformal vertex algebra with c = 1

NB: normal ordering ≃ “put annihilation operators to the right”
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Interlude: Affine Lie algebras

loop algebra gloop of a Lie algebra g

= Laurent polynomials with values in g :

gloop := g⊗C C((t))

is naturally a Lie algebra, with bracket

[x⊗ f, y⊗ g] := [x, y]g⊗ fg

g finite-dimensional simple

=⇒ loop algebra has unique non-trivial central extension g(1) :

0 → C → g(1) → gloop → 0

called the untwisted affine Lie algebra associated to g

Lie brackets, for K suitably normalized element of the center:

[x⊗ f, y⊗ g] := [x, y]g⊗ fg − κg(x, y) Rest=0(f
dg
dt

) K

[K, · ] = 0

g(1) shares many properties of g

in particular:

– triangular decomposition

– (generalized) Cartan matrix / Dynkin diagram

g naturally embedded in g(1) as the ‘zero mode’ subalgebra {x⊗ 1}
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WZW vertex algebras

Def.: WZW vertex algebra V(g, k)

Input data:

• finite-dimensional simple Lie algebra g

• k ∈C
Construction:

• set g̃+ := g[[t]]⊕ CK (Lie subalgbra of g(1))

• one-dimensional g̃+-module N ∼=C : g[[t]] N = 0 , K = k idN

• define space of states as induced g(1)-module:

V := U(g(1))⊗U(g̃+) N

then
V ∼= U(g̃−)|0〉 with g̃− = g[[t−1]]

|0〉 = 1⊗ 1 ∈ U(g(1))⊗N

• vertex operators: set x⊗ tn =: xn and

Y (x−1|0〉; z) := x(z) ≡
∑

n∈Z
xn z−n−1

Y (x−n|0〉; z) := ∂n−1
z x(z) for n > 0

Y (x−1y−1|0〉; z) := : x(z) y(z) : . . . . . .

Theorem: this defines a conformal vertex algebra with Virasoro vector

|vir〉 =
1

2 (k + h∨)

∑

a

: (τ a)−1 (τa)−1 :

and central charge c(g, k) =
k dim(g)

k + h∨

here h∨= dual Coxeter number of g and {τ a}, {τa} dual bases of g
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Theorem:

with Y (x−1|0〉; z) as prescribed above, the extension to all of V

is completely determined by the requirement to obtain a vertex algebra

NB : terminology “ WZW ” :

corresponding CFT models have a realization as sigma models,
with Wess-Zumino term, on group manifolds G

( G has the compact real form of g as its Lie algebra )
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Vertex algebra modules

the fields in V do not exhaust the fields in the theory

others are obtained via rep’s of V

Def.: module M over a vertex algebra V

Data:

• space of states : Z≥0-graded complex vector space M =
⊕

n≥0 M(n)

• translation operator : grade-1 linear map TM : M→M

• representation map: linear map

YM : V → End(M)[[z, z−1]]

Axioms:

• vacuum vector corresponds to identity map: YM(|0〉; z) = idM

• rep map respects the grading: am(M(p)) ⊆ (M(p−m)) if a∈V(n)

• TM implements infinitesimal translations: [TM , YM(v; z)] = ∂zYM(v; z)

• representation property:

YM(v1; z1) YM(v2; z2) = YM(Y (v1; z1−z2)v2; z2)

modules exist:

M0 :=V is a V-module – the vacuum module – with Y as rep map

( non-trivial issue: rep property follows from locality )
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Def.: module M over a conformal vertex algebra V

module over V as a vertex algebra subject to additional axiom:

• for any u∈M(n),

L0 u = (∆M + n) u for some ∆M ∈C
∆M is called the conformal weight of M

M0 =V is also a module in this conformal sense

rep property for v = |vir〉

=⇒ any V-module M is also a Vir-module, with C = c idM

L0 is diagonalizable, with eigenvalues ∆M + n for n∈Z≥0

can thus define formal character of M :

χM(τ ) := trM exp [ 2πi τ (L0−
c

24
) ]

with τ a formal parameter
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WZW vertex algebra modules

rep property for v = x−1|0〉

=⇒ any V(g, k)-module M is also a g(1)-module, with K = k idM

in fact:

irreducible V(g, k)-module =⇒ irreducible highest weight g(1)-module

for generic k ∈C: Verma module

χM = ‘Vir-specialized’ g(1)-character of M

for k ∈Z>0: integrable g(1)-modules

behave in many respects as finite-dimensional g-modules

thus for k ∈Z>0 only deal with easy part of rep theory of g(1)

for fixed k ∈Z>0, only finitely many i.h.w. g(1)-modules:

highest g-weight λ satisfying

(λ, α(i)∨) ∈ Z≥0 for i = 1, 2, ... , rk(g)

and

(λ, θ∨) ≤ k

Concretely for g = A1 (standard normalization: λ twice the spin) :

λ∈Z , 0 ≤ λ ≤ k
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Rational vertex algebras

origin of special properties for k ∈Z>0: V(g, k) is rational

Def.: rational (conformal) vertex algebra

a vertex algebra for which every module is a direct sum of irreducible

modules

equivalent technical definition available

(possibly slightly more restrictive)

properties of rational V :

• subspaces M(n) of V-module M automatically finite-dimensional

• more important:

V has, up to isomorphism, only finitely many irreducible modules

Disclaimer: from now on largely restrict to the rational case

common claim / expectation:

rational case serves as natural starting point for general case

unfortunately:

in various respects general CFT much more complicated than RCFT

however:

indeed RCFT relevant in many applications
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CONFORMAL BLOCKS
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Local vs global implementation of symmetries

heuristically,

correlators ∼ vacuum expectation values of products of field operators

here: • ‘product of field operators’ = radially ordered product

• ‘vacuum expectation value’ ∼ some invariant

Question: invariant w.r.t. what ?

In particular: correlator should depend on position

of insertion points pi of the fields

; identify formal variable zi with a local complex coordinate at pi

Also: correlator should depend on global properties of the surface X

; specify now: X compact Riemann surface (with punctures)

more specifically: a smooth projective complex curve X ≡ C

and do not just want correlator for one choice of insertion points {pi}

and moduli (of complex structures) of C,

but rather its dependence on these data when they are varied

the vertex algebra itself only tells how symmetries act locally on C

to obtain global implementation of the symmetries:

• for general V , to work with sheaves of vertex algebras

already their construction is beyond the scope of these lectures

• much simpler construction when V comes from a Lie algebra,

in particular for Heisenberg and WZW cases

can indeed be formulated in terms of rep’s of the Lie algebra
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technical reason for simplifications:

must keep track of the effects ol local coordinate changes

and in Heisenberg and WZW cases V can be generated

from a small subspace that is closed under changes of local coordinates

Preview: Correlators ; Blocks

some aspects of the outcome:

do not get a function on the spaceM of moduli of C and locations

of insertion points, but rather a multi-valued function :

a section of a (generically) non-trivial vector bundle onM

called the bundle of conformal blocks or bundle of chiral blocks

fiber over a point ofM : the vector space of conformal/chiral blocks

the fibers are finite-dimensional (at least for rational theories)
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The ingredients in the WZW case

— assume k ∈Z>0 (but some results apply to general k) —

Ingredients:

• i.h.w. g(1)-modules Hλ with highest g-weight λ∈ I and level k

• ordered m-tuples ~H ≡ ~H~λ of such modules

same symbol also for Cartesian product and for tensor product /C
• algebraic dual ( ~H)∗

• finite-dimensional moduli spaceM of smooth projective curves C

of genus g with m points p1, . . . pm marked by λ1, . . . , λm ∈ I

points inM written as (C, ~p, ~λ)

• infinite-dimensional extended moduli spaceMext of . . . . . . and

a choice of a local coordinate ξi around each pi

• natural projection π:Mext →M , (C, ~p, ~λ, ~ξ) 7→ (C, ~p, ~λ)

• Lie group U of local coordinate changes:

U := {u∈C[[z]] | u(0) = 0, u′(0) 6= 0}

• natural action of U onMext: ~u(C, ~p, ~λ, ~ξ) = (C, ~p, ~λ, ~ξ ◦ u)

therebyMext is a Um-principal bundle overM

• F ≡ F(C, ~p) : space of functions holomorphic on C \ ~p and

with at most a finite order pole at each pi

• Lie algebra g⊗F ≡ g⊗C F with Lie bracket like for gloop :

[x⊗ f, y⊗ g] := [x, y]g⊗ fg

also recall: xn = x⊗ tn
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The construction in the WZW case

Construction:

(co-)invariants with respect to natural action of g⊗F on ~H and ~H∗

• consider a homogeneous element x⊗ f

• expand f in local coordinates around each pi ; m Laurent series

f (i)(ξi) =
∑

n≫−∞

f (i)
n ξn

i

• set

x̃(f ; pi) :=
∑

n

f (i)
n xn

( may be regarded as element of gloop and thus of g(1) resp. U(g(1)) )

• g⊗F acts on ~H = Hλ1 ⊗ · · · ⊗ Hλm as
m∑

i=1

1⊗ · · · ⊗1⊗Rλi
(x̃(f ; pi))⊗1⊗ · · ·1

(i.e. in short: y ∈ g⊗F acts on Hλi
via expanding y in local coo’s)

• Def.: vector space of conformal blocks

associated to a point inM: the space of invariants

B(C, ~p, ~λ) :=
(

~H∗
)g⊗F

• Theorem: equivalently, the space of g⊗F -coinvariants

~H / [ (g⊗F) U(g⊗F) ~H ] = B(C, ~p, ~λ)∗

in the original space ~H

invariants in the dual space ~H∗ just turns out to be the right thing

but for actual calculations preferable to work with coinvariants in ~H
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Remarks:

• in algebraic geometry, conformal blocks correspond to

holomorphic sections in line bundles over moduli spaces

(via infinite-dimensional Borel-Weil-Bott theory)

• result depends actually not on a point inM, but onMext:

associate to a point ofMext a subalgebra gm in direct sum (g(1))m

for different choices of local coo’s get non-identical subalgebras,

but each isomorphic to g⊗F

• however, via Vir have a natural action of U on these subalgebras

and thus on the invariants

=⇒ conformal blocks transform covariantly under U
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More on the WZW case

combine rep theory and algebraic geometry tools

=⇒ can describe the bundles of WZW blocks quite explicitly

but details complicated

one easy example: 2-point blocks on C = P
1 :

• with standard coordinate w

and insertion points at w = 0 and w =∞, have F = C[w, w−1]

• x⊗ wn acts as xn⊗ 1+1⊗x−n

• space of invariants ∼= C for λ2 = λ+
1 , else zero

similar for P
1 with m > 2 insertion points at finite values wi of w:

with local coordinates w−wi a basis for F is

BF = {w0} ∪
m⋃

i=1

{(w−wi)
n |n∈Z<0}

NB: what about the level?

g⊗F has central extension s.t. Hλi
are modules individually

with eigenvalues (depending on k) adding up to 0 (residue theorem)

arises naturally when checking that ~H indeed furnishes a g⊗F -module

only works if all g(1)-modules Hλi
have the same level

further important result: factorization

allows to relate arbitrary blocks to the 3-point blocks on P
1

crucial in proof of WZW Verlinde formula
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FULL CFT
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Chiral and full CFT

recall: two basic ingredients of CFT:

• the surface X on which the theory is defined

• correlators — the prime quantities of interest

up to now:

• X a complex curve C

• correlators are conformal blocks, thus (in general) multivalued

in most applications want instead:

• world sheet X can have a boundary, and it may be non-oriented

• correlators are functions of the moduli of X

and of the positions of field insertions

in short: previously had chiral CFT — now want full CFT

Why chiral CFT ?

• does have applications

• symmetries are a purely chiral issue

• only (known) way to understand full CFT is via chiral CFT

“ full CFT is obtained by combining two chiral halves ”

can be stated more concretely :

chiral RCFT ! modular tensor category C

full RCFT ! modular tensor category C & one specific object in C

— to be elaborated !! —
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The bulk state space

from now on:

• RCFT

• regard C =Rep(V) as abstract category

• regard conformal blocks as abstract vector spaces

two chiral halves =⇒

relevant space of (bulk) states is object in C⊗C, not in C :

Hbulk =
⊕

i,j∈I

Zi,j Ui×Uj

(C : C with opposite ‘braiding’ and ‘twist’)

unique vacuum =⇒ Z0,0 = 1

What about the other multiplicities Zi,j ?

Zi,j are also coefficients of the torus partition function Z

(zero-point correlator for X a torus)

Z(τ ) =
∑

i,j∈I

Zi,jχi(τ ) [χj(τ )]∗

χi = character of Ui as a V-module

• depends on conformal structure of the torus ; complex structure

; modular invariance : Z(τ ) = Z(τ+1) = Z(−τ−1)

Two obvious ‘modular invariants’:

Zi,j = δi,j =: Zdiag
i,j and Zi,j = δi,j∨ =: Zc.c.

i,j

Warning: χi∨ = χi (as Vir-specialized characters)

but can be natural to include further variables

anyhow, bulk state spaces for Zdiag and Zc.c. differ (in general)
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Modular invariants

classifying modular invariant combinations of characters for given C

(subject to Zi,j ∈Z and Z0,0 = 1)

was major business, historically

one early result: A-D-E classification for rational sl2 WZW theories

But:

modular invariance of Z is necessary, but not sufficient

Indeed, many unphysical modular invariants are known

not describing a physically sensible torus partition function

Example:

• charge conjugation invariant Zc.c. always physical

• true diagonal invariant Zdiag not physical for all RCFTs

(though very often – trivially whenever i∨= i for all i∈ I)
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The complex double and the connecting manifold

full CFT comes from chiral CFT

=⇒ for any world sheet X need associated complex curve C

on which the chiral CFT lives

natural prescription, uniformly for all world sheets: complex double

C = X̂ :=
(

X× {−1, 1}
)
/∼

with (x, 1)∼ (x,−1) for x∈ ∂X

• Conversely: X = X̂ / 〈σ〉

with σ an orientation-reversing involution

• X̂ is naturally the boundary of a three-manifold:

the connecting manifold

MX :=
(

X× [−1, 1]
)
/∼

with (x, t)∼ (x,−t) for x∈ ∂X and all t∈ [−1, 1]

• Examples:

X closed orientable =⇒ X̂ = X⊔−X , MX = X× [−1, 1]

X = disk =⇒ X̂ = S2 , σ: w 7→ 1/w∗, MX = 3-ball

X = RP
2 (‘cross cap’) =⇒ X̂ = S2 , σ: w 7→−1/w∗

X annulus / Möbius strip / Klein bottle =⇒ X̂ a torus

NB: insertion points come with local coordinates

preferable to work instead with (germs of) oriented arcs

alternatively: around insertion point cut out a little disk D

with parametrized ∂D
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Idea:

construct correlators with the help of MX , not only X̂

Note:

• MX contains no additional topological information:

X a deformation retract of MX

(only ‘thicken’ the world sheet a bit)

X naturally embedded: ı: X→MX , x 7→ (x, 0)

• to relate chiral theory on X̂ ⊂ MX to full theory on X∼ ı(X) ⊂ MX

need “something in between”

• use a 3-dim topological field theory (TFT) living on MX

‘topological’: carries no dynamical information

• indeed a modular tensor category determines uniquely a 3-d TFT

naturally involves ribbons and ribbon networks

labeled (‘decorated’) by objects of C
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Coupons — Bulk fields as morphisms

adapt terminology:

space of bulk fields Φα
i,j of type i, j – Zi,j-dimensional vector space

i, j chiral labels: correspond to arcs on ∂±MX

connect them to ı(X) by oriented ribbons labeled by Ui resp. Uj

running essentially along connecting intervals

and ‘stick them together’ on X (from now on suppress ı)

• simplest possibility:

let the ribbon run through’ — allows only for Zc.c.

• better:

at arc in X place (a coupon labeled by) a suitable morphism of C

• combining the i- and j-ribbons to ‘nothing ’ –

i.e. the unvisible ribbon decorated by 1 – again amounts to Zc.c. :

Hom(Ui⊗Uj,1) ∼= δi,j∨ C
Bold idea:

• implement new ingredient: (topological) defect lines on X

(arise e.g. from: frustration line in the Ising model, disorder fields)

• insertion point/arc sits on a defect line

• describe line as a ribbon (flat in X) decorated by object X of C

• thus coupon labeled by morphism

f ∈ Hom(Ui⊗X ⊗Uj, X)

resp. f ∈ Hom(Ui⊗X ⊗Uj, X
′)
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Bulk fields vs defect fields

Objections:

• Can this possibly work ?

Yes ! — provided that restrict the allowed objects X

as well as morphisms

and restrictions have a natural rep theoretic explanation

• For bulk fields one does not see any defect line, ok ?

Yes ! — but:

– bulk fields (and disorder fields) are special types of defect fields

– there is an invisible defect line A

similarly as the object 1 of C is invisible

– bulk fields connect A to A, i.e.

Φα
i,j ∈ Hom(Ui⊗A⊗Uj, A)

( in fact Φα
i,j lies in a certain subspace HomA|A(Ui⊗

+A⊗−Uj, A) )

crucial property of A as an object of C :

A is a simple symmetric special Frobenius algebra in C
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Rep(V) AND TENSOR CATEGORIES
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Rep(V) as abelian category

modules over a (conformal) vertex algebra V form the

representation category Rep(V) of V :

• for any two modules M and M ′

have a space of intertwiners / homomorphisms from M to M ′:

maps f : M→M ′ compatible with all properties of M, M ′

e.g. linear, compatible with the grading and with the action of V

• denote set of homomorphisms from M to M ′ by Hom(M, M ′)

• any f ∈Hom(M, M ′) and g ∈Hom(M ′, M ′′)

can be composed to g ◦ f ∈ Hom(M, M ′′)

• Hom(M, M) contains the identity map idM

=⇒ V-modules form a category Rep(V) with V-modules as objects

and homomorphisms as morphisms

• notion of kernel and cokernel of a morphism, behaving as usual

• O := {0} is a (boring) V-module

and Hom(M, O) ∼= {0} ∼= Hom(O, M) for any M

• morphism sets are C-vector spaces

and composition of morphisms is C-bilinear

=⇒ Rep(V) is a C-linear abelian category

CFT-MP2 – August 2008 48 2008-08-29



Rep(V) as monoidal category

vertex algebras and their modules are relatively complicated

; below suppress many details

in some respects close to rep’s of simple and affine Lie algebras

one important modification:

under some mild conditions on V

have tensor product M ⊗M ′ of V-modules M, M ′

which is again a V-module

but unlike for Lie algebras l not given by M ⊗CM ′ as vector space

(do not have analogue of the Hopf algebra U(l) )

NB: tensor product of g(1)-modules of levels k1 and k2 has level k1+k2

indeed construction rather involved:

• define intertwining operator for any triple M, M ′, M ′′

in a way not using notion of tensor product

( analogue for Lie algebras:

intertwiner from M ⊗M ′ to M ′′ as linear map j: M→HomC(M ′, M ′′)

with x j(m) m′ = j(xm) m′+j(m) xm′ for x∈ g, m∈M, m′∈M ′ )

• define M ⊗M ′ to M ′′ as pair consisting of

module M̃ and intertwining operator of type M, M ′, M̃

such that a universal property holds w.r.t. arbitrary intertwining

operators of type M, M ′, M ′′

then intertwining operator corresponds indeed to space of intertwiners

between M ⊗M ′ and M ′′
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Further:

• tensoring from the left or right with M is a functor

from Rep(V) to itself: compatibly maps morphisms to morphisms

• tensor product is associative up to isomorphism

and associativity isomorphisms satisfy the pentagon identity

i.e. equality of the two possible composite morphisms

M1⊗ (M2⊗ (M3⊗M4))→ ((M1⊗M2)⊗M3)⊗M4

schematically,

• ( • ( • • )) → • (( • • ) • ) → ( • ( • • )) • → (( • • ) • ) •

= • ( • ( • • )) → ( • • )( • • ) → (( • • ) • ) •

• M0⊗M and M ⊗M0 are isomorphic to M

and the ‘left and right unit isomorphisms’ satisfy

the triangle identity for M1⊗ (V ⊗M2)→M1⊗M2 :

• ( ◦ • ) → • • = • ( ◦ • ) → ( • ◦ ) • → • •

=⇒ Rep(V) is a monoidal category = tensor category

Coherence theorem: pentagon and ensure that any two morphisms

between tensor products with identical factors formed by

associativity and left/right unit isomorphisms are equal

=⇒ every monoidal category equivalent to a strict one in which

associativity and left/right unit morphisms are identity morphisms

from now on:

tacitly replace any tensor category by an equivalent strict one
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Interlude: Graphical calculus

may represent morphisms f ∈Hom(U, V ) graphically as

( see the file for the 2nd part of the lectures )

in particular idU as

( see the file for the 2nd part of the lectures )

the composition of two morphisms then corresponds to

( see the file for the 2nd part of the lectures )

in a (strict) monoidal category

can also represent the tensor product of morphisms:

( see the file for the 2nd part of the lectures )

the identity morphism of the tensor unit 1 is invisible
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Rep(V) as ribbon category

with some additional assumptions on V have in addition:

• for any M , exp(−2πiL0) furnishes an isomorphism in Hom(M, M)

called twist of M and denoted by θM

• tensor product actually depending on formal variable z,

which is then regarded as a complex number and set to 1

keeping z, and analytically continuing from z = 1 to z =−1,

followed by an application of a shift by 1, yields isomorphisms

cM,M ′ : M ⊗M ′ →M ′⊗M .

corresponds to a flip v⊗ v′ 7→ v′⊗ v in M ⊗CM ′,

but iteration does not give the identity morphism

called braiding isomorphisms

• the restricted dual space M∨ ∼=
⊕

n (M(n))
∗ is again a V-module

(called contragredient to M)

and there are morphisms

bM ∈Hom(M0, M ⊗M∨) and dM ∈Hom(M∨⊗M, M0)

called coevaluation and evaluation, or duality morphisms

• the twist, braiding and duality morphisms satisfy relations

analogous to ribbons in 3-space

=⇒ Rep(V) is a ribbon category
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Rep(V) as modular tensor category

now finally assume that V is rational

then:

• M0 =V is irreducible

• every module is isomorphic to a finite direct sum of irreducibles

• up to isomorphism there are only finitely many irreducible modules

Ui, i∈ I

• the |I| × |I| -matrix with entries

si,j := (dUj
⊗ d̃Ui

) ◦ [ idU∨i
⊗ (cUi,Uj

◦ cUj ,Ui
)⊗ idU∨j

] ◦ (b̃Uj
⊗ bUi

)

is non-degenerate

=⇒ Rep(V) is a modular tensor category
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