CATEGORICAL STRUCTURES
IN CONFORMAL FIELD THEORY

Jürgen Fuchs
CATEGORICAL STRUCTURES IN CONFORMAL FIELD THEORY
CATEGORICAL STRUCTURES IN CONFORMAL FIELD THEORY
Plan

- **Aim**: Field-theoretic structures on a world sheet

 → categorical / combinatorial structures which are under control
Plan

- **Aim**: Field-theoretic structures on a world sheet (CFT)
 - categorical / combinatorial structures which are under control (CFT)

- **Present**: Rational CFT
 - Frobenius algebras in modular tensor categories
 - construct correlators with tools from 3-d TFT
Plan

- **Aim**: Field-theoretic structures on a world sheet (CFT)
 - categorical / combinatorial structures which are under control (CFT)

- **Present**: Rational CFT
 - Frobenius algebras in modular tensor categories
 - construct correlators with tools from 3-d TFT

- **Future**: General CFT
 - One approach: study phases of CFT and defect lines between them
 - Bicategory \mathcal{P}
Plan

- **Aim**: Field-theoretic structures on a world sheet \((\text{CFT})\)
 - \(\leadsto\) categorical / combinatorial structures which are under control \((\text{CFT})\)

- **Present**: Rational CFT
 - \(\leadsto\) Frobenius algebras in modular tensor categories
 - \(\leadsto\) construct correlators with tools from 3-d TFT

- **Future**: General CFT
 - One approach: study phases of CFT and defect lines between them
 - \(\leadsto\) Bicategory \(\mathcal{P}\)

- **Appendix**: TFT construction of RCFT correlators
Structures on the world sheet

Geometry:
- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not (\iff two types of CFTs \leftrightarrow type I/II string theory)
 - may have non-empty boundary

Field theory on the world sheet \implies decorations:
 - in particular possible types of fields / state insertions at points (arcs) in Y
 - e.g. describing quasiparticle excitations in condensed matter systems
Structures on the world sheet

Geometry:

- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not (\implies two types of CFTs \iff type I / II string theory)
 - may have non-empty boundary

Field theory on the world sheet \implies decorations:

- **Boundary condition** M on each segment of ∂Y (\iff D-branes in string theory)
Structures on the world sheet

Geometry:

- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not (\implies two types of CFTs \iff type I / II string theory)
 - may have non-empty boundary

Field theory on the world sheet \implies decorations:

- **Boundary condition** M on each segment of ∂Y (\iff D-branes in string theory)
- **Boundary field** Ψ on ∂Y can change boundary condition $M \rightarrow M'$ (open strings)
Structures on the world sheet

Geometry:

- **World sheet** = smooth compact two-manifold Y with Riemannian metric

 ▶️ may be oriented or not

 ▶️ may have non-empty boundary

Field theory on the world sheet \Rightarrow decorations:

- **Boundary condition** M on each segment of ∂Y

- **Boundary field** Ψ on ∂Y can change boundary condition $M \rightarrow M'$

- Different regions of Y can exist in different **phases** A

 (“different full CFTs based on the same chiral CFT”)
Structures on the world sheet

Geometry:
- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not
 - may have non-empty boundary

Field theory on the world sheet \implies decorations:
- **Boundary condition** M on each segment of ∂Y
- **Boundary field** Ψ on ∂Y can change boundary condition $M \rightarrow M'$
- Different regions of Y can exist in different **phases** A
 - (“different full CFTs based on the same chiral CFT”)
- **Defect line** X provides separation between phases/regions
Structures on the world sheet

Geometry:
- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not
 - may have non-empty boundary

Field theory on the world sheet \Rightarrow decorations:
- **Boundary condition** M on each segment of ∂Y
- **Boundary field** Ψ on ∂Y can change boundary condition $M \rightarrow M'$
- Different regions of Y can exist in different **phases** A
 ("different full CFTs based on the same chiral CFT")
- **Defect line** X provides separation between phases/regions
- **Defect field** Θ can change type of defect line $X \rightarrow X'$
 (keeping phases)
Structures on the world sheet

Geometry:
- **World sheet** = smooth compact two-manifold Y with Riemannian metric
 - may be oriented or not
 - may have non-empty boundary

Field theory on the world sheet \Rightarrow decorations:
- **Boundary condition** M on each segment of ∂Y
- **Boundary field** Ψ on ∂Y can change boundary condition $M \rightarrow M'$
- Different regions of Y can exist in different **phases** A
 (“different full CFTs based on the same chiral CFT”)
- **Defect line** X provides separation between phases/regions
- **Defect field** Θ can change type of defect line $X \rightarrow X'$
 (keeping phases)

includes **bulk fields** (closed strings)
and **disorder fields**
Structures on the world sheet

Geometry:
- **World sheet** = smooth compact two-manifold \(Y \) with Riemannian metric
 - may be oriented or not
 - may have non-empty boundary

Field theory on the world sheet \(\Rightarrow \) decorations:
- **Boundary condition** \(M \) on each segment of \(\partial Y \)
- **Boundary field** \(\Psi \) on \(\partial Y \) can change boundary condition \(M \rightarrow M' \)
- Different regions of \(Y \) can exist in different **phases** \(A \)
 ("different full CFTs based on the same chiral CFT")
- **Defect line** \(X \) provides separation between phases/regions
- **Defect field** \(\Theta \) can change type of defect line \(X \rightarrow X' \)

Concrete realization: critical limit of spin model on 2-d lattice, e.g. Ising model
- Boundary condition: prescribe values of ‘outermost’ spin variables
- Defect line: change rule for interaction between neighbouring spins separated by the line (e.g. “frustration”: ferromagnetic to antiferromagnetic)
Insight:
- can formalize boundary conditions, defect lines and bulk/boundary/defect field insertions as nice mathematical structures
- can analyze these by standard methods
- thus can make precise statements and establish proofs
 as well as concretely calculate quantities of interest in specific models
Insight:

- can formalize boundary conditions, defect lines and bulk/boundary/defect field insertions as nice mathematical structures
- can analyze these by standard methods
- thus can make precise statements and establish proofs as well as concretely calculate quantities of interest in specific models

One way to start: formalize the *symmetries*:

- chiral symmetries \(\leadsto\) conformal vertex algebra \(\mathcal{V}\)
- aspects of fields \(\leadsto\) representation category \(\text{Rep}(\mathcal{V})\)
Chiral and full CFT

Insight:
- can formalize boundary conditions, defect lines and bulk/boundary/defect field insertions as nice mathematical structures
- can analyze these by standard methods
- thus can make precise statements and establish proofs as well as concretely calculate quantities of interest in specific models

One way to start: formalize the symmetries:
- chiral symmetries \(\rightsquigarrow \) conformal vertex algebra \(\mathcal{V} \)
- aspects of fields \(\rightsquigarrow \) representation category \(\mathcal{Rep}(\mathcal{V}) \)

"Chiral":
- free boson field \(\phi \) in \(d = 2 \):
 \[\partial \bar{\partial} \phi = 0 \]
- thus left- and right-movers
 \[\phi_\pm : \partial \phi_+ = 0 = \bar{\partial} \phi_- \]
- \(\phi_\pm \) also called chiral fields
Chiral and full CFT

One way to proceed: concentrate on combinatorial aspects
Chiral and full CFT

One way to proceed: concentrate on combinatorial aspects

- Symmetries: forget about \mathcal{V}, keep $\text{Rep}(\mathcal{V})$
Chiral and full CFT

One way to proceed: concentrate on **combinatorial** aspects

- **Symmetries**: forget about \mathcal{V}, keep $\mathcal{Rep}(\mathcal{V})$
- **Geometry**: world sheet as topological manifold

 (do not specify conformal structure / metric)
Chiral and full CFT

One way to proceed: concentrate on combinatorial aspects

⇒ allows for neat separation of

- Chiral CFT (≡ “CFT on complex curves”)
 ingredients a conformal vertex algebra V and a class of V-modules V_i
 chiral vertex operators and sheaves of conformal blocks

- Full CFT (≡ “CFT on world sheets”)
 = real curves / conformal surfaces
Chiral and full CFT

One way to proceed: concentrate on **combinatorial** aspects

\[\Longrightarrow \text{ allows for neat separation of} \]

- **Chiral** CFT \(\equiv \text{“CFT on complex curves”}\)
 - ingredients: a conformal vertex algebra \(\mathcal{V}\) and a class of \(\mathcal{V}\)-modules \(\mathcal{V}_i\)
 - chiral vertex operators and sheaves of conformal blocks

- **Full** CFT \(\equiv \text{“CFT on world sheets”}\)
 - describe fields, boundary conditions, defect lines
 \[\Longrightarrow \text{ must in addition “combine left- and right-movers”} \]

 e.g. specify the space of bulk fields

\[\mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in \mathcal{I}} Z_{i,j} \mathcal{V}_i \otimes_{\mathbb{C}} \mathcal{V}_j \]
Chiral and full CFT

One way to proceed: concentrate on **combinatorial** aspects

⇒ allows for neat separation of

- **Chiral** CFT (≡ “CFT on complex curves”)
 - ingredients: a conformal vertex algebra \(\mathcal{V} \) and a class of \(\mathcal{V} \)-modules \(\mathcal{V}_i \)
 - chiral vertex operators and sheaves of conformal blocks

- **Full** CFT (≡ “CFT on world sheets”)
 - describe fields, boundary conditions, defect lines
 ⇒ must in addition “combine left- and right-movers”

 e.g. specify the **space of bulk fields**

\[
\mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in \mathcal{I}} Z_{i,j} \mathcal{V}_i \otimes \mathbb{C} \mathcal{V}_j
\]
Chiral and full CFT

One way to proceed: concentrate on *combinatorial* aspects

⇒ allows for neat separation of:

- **Chiral CFT** (≡ “CFT on complex curves”)
 - ingredients: a conformal vertex algebra \(\mathcal{V} \) and a class of \(\mathcal{V} \)-modules \(\mathcal{V}_i \)
 - chiral vertex operators and sheaves of conformal blocks

- **Full CFT** (≡ “CFT on world sheets”)
 - describe fields, boundary conditions, defect lines
 ⇒ must in addition “combine left- and right-movers”

 e.g. specify the space of bulk fields

\[
\mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in I} Z_{i,j} \mathcal{V}_i \otimes \mathbb{C} \mathcal{V}_j
\]

- **Traditional approach**: Classify modular invariants \(Z \equiv (Z_{i,j}) \)
 - \(I \) finite for RCFT

\[
\begin{align*}
[Z, \rho_X(\gamma)] &= 0 \quad \text{for } \gamma \in \text{SL}(2, \mathbb{Z}) \\
Z_{i,j} &\in \mathbb{Z}_{\geq 0} \\
Z_{0,0} &= 1 \quad (\mathcal{V}_0 \equiv \mathcal{V})
\end{align*}
\]
Chiral and full CFT

One way to proceed: concentrate on combinatorial aspects

⇒ allows for neat separation of

- **Chiral CFT** (≡ “CFT on complex curves”)
 - ingredients: a conformal vertex algebra \(\mathcal{V} \) and a class of \(\mathcal{V} \)-modules \(\mathcal{V}_i \)
 - chiral vertex operators and sheaves of conformal blocks

- **Full CFT** (≡ “CFT on world sheets”)
 - describe fields, boundary conditions, defect lines
 ⇒ must in addition “combine left- and right-movers”

 e.g. specify the space of bulk fields
 \[
 \mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in I} Z_{i,j} \mathcal{V}_i \otimes_\mathbb{C} \mathcal{V}_j
 \]

- **Traditional approach**: Classify modular invariants \(Z \equiv (Z_{i,j}) \) \(I \) finite for RCFT

 e.g. A-D-E classification for \(\widehat{\mathfrak{sl}}(2) \)-models [C-I-Z 1987]
Chiral and full CFT

One way to proceed: concentrate on **combinatorial** aspects

⇒ allows for neat separation of

- **Chiral CFT** (≡ “CFT on complex curves”)
 - ingredients: a conformal vertex algebra \(\mathcal{V} \) and a class of \(\mathcal{V} \)-modules \(\mathcal{V}_i \)
 - chiral vertex operators and sheaves of conformal blocks

- **Full CFT** (≡ “CFT on world sheets”)
 - describe fields, boundary conditions, defect lines
 ⇒ must in addition “**combine left- and right-movers**”

 e.g. specify the space of bulk fields
 \[\mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in I} Z_{i,j} \mathcal{V}_i \otimes_{\mathbb{C}} \mathcal{V}_j \]

- **Traditional approach**: Classify modular invariants \(Z \equiv \left(Z_{i,j} \right) \)
 - \(I \) finite for RCFT

bad: no nice general tools
 - no structural insight
Chiral and full CFT

One way to proceed: concentrate on combinatorial aspects
allows for neat separation of

- **Chiral CFT** (≡ “CFT on complex curves”)
 ingredients a conformal vertex algebra \(\mathcal{V} \) and a class of \(\mathcal{V} \)-modules \(\mathcal{V}_i \)
 chiral vertex operators and sheaves of conformal blocks

- **Full CFT** (≡ “CFT on world sheets”)
 describe fields, boundary conditions, defect lines
 must in addition “combine left- and right-movers”

 e.g. specify the space of bulk fields \(\mathcal{H}_{\text{bulk}} = \bigoplus_{i,j \in \mathcal{I}} Z_{i,j} \mathcal{V}_i \otimes \mathbb{C} \mathcal{V}_j \)

- **Traditional approach**: Classify modular invariants \(Z \equiv (Z_{i,j}) \) \(\mathcal{I} \) finite for RCFT
 bad: no nice general tools
 no structural insight
 worse: some solutions *unphysical*: do not satisfy further constraints
Rational CFT

Restriction – for now: Rational CFT
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}
- $\Rightarrow \quad \mathcal{C} \cong \text{Rep}(\mathcal{V})$ a modular tensor category [Huang 2004]
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}

$\implies \mathcal{C} \simeq \text{Rep}(\mathcal{V})$ a modular tensor category
 - abelian \mathbb{C}-linear
 - semisimple
 - ribbon, with simple 1
 - finitely many simple objects U_i up to isomorphism
 - braiding maximally non-symmetric
Rational CFT

Restriction – for now: **Rational** CFT

- **Rational** conformal vertex algebra \mathcal{V}

 \Rightarrow $\mathcal{C} \cong \text{Rep}(\mathcal{V})$ a modular tensor category

 - abelian \mathbb{C}-linear
 - semisimple
 - ribbon, with simple 1
 - finitely many simple objects U_i up to isomorphism
 - braiding maximally non-symmetric

\[\det_{i,j} \neq 0 \]

\iff no transparent objects besides 1

strict monoidal, rigid, braided, balanced
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}

$\implies \mathcal{C} \simeq \text{Rep}(\mathcal{V})$ a modular tensor category

- abelian \mathbb{C}-linear
- semisimple
- ribbon, with simple 1
- finitely many simple objects U_i up to isomorphism
- braiding maximally non-symmetric

(somewhat more restricted than Turaev’s definition)
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}
- $\mathcal{C} \simeq \mathcal{R}ep(\mathcal{V})$ a modular tensor category
- \mathcal{C}-decorated 3-d TFT

 functor $tft_\mathcal{C} : 3-Cob_\mathcal{C} \rightarrow \mathcal{Vect}_\mathcal{C}$

 assigning vector spaces to extended surfaces and linear maps to cobordisms

[Reshetikhin–Turaev 1990]
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra V
- $C \simeq \text{Rep}(V)$ a modular tensor category

- Combinatorial aspects of rational chiral CFT (CFT on complex curves) encoded in C as an abstract category
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}
- $\Rightarrow \quad \mathcal{C} \simeq \text{Rep}(\mathcal{V})$ a modular tensor category

- Combinatorial aspects of rational chiral CFT (CFT on complex curves)
 encoded in \mathcal{C} as an abstract category

More recent:

- Combinatorial aspects of rational full CFT (CFT on world sheets)
 encoded in \mathcal{C} together with one additional datum:
Rational CFT

Restriction – for now: Rational CFT

- rational conformal vertex algebra \mathcal{V}
- $\mathcal{C} \simeq \text{Rep}(\mathcal{V})$ a modular tensor category

Combinatorial aspects of rational chiral CFT (CFT on complex curves)
encoded in \mathcal{C} as an abstract category

More recent:

- Combinatorial aspects of rational full CFT (CFT on world sheets)
encoded in \mathcal{C} together with one additional datum:
a symmetric special Frobenius algebra A in \mathcal{C}

(more precisely: a Morita class of such algebras) [F–R–S 2001 ⋯]
Rational CFT

Restriction – for now: Rational CFT

- Rational conformal vertex algebra \(\mathcal{V} \)
- \(\Rightarrow \mathcal{C} \simeq \text{Rep}(\mathcal{V}) \) a modular tensor category

- Combinatorial aspects of rational chiral CFT (CFT on complex curves) encoded in \(\mathcal{C} \) as an abstract category

More recent:

- Combinatorial aspects of rational full CFT (CFT on world sheets) encoded in \(\mathcal{C} \) together with one additional datum:
 - a symmetric special Frobenius algebra \(A \) in \(\mathcal{C} \) (more precisely: a Morita class of such algebras) [F–R–S 2001 ···]

 e.g. \(Z_{i,j}(A) = \dim_{\mathbb{C}} \text{Hom}_{\mathcal{A}|A}(U_i \otimes^+ A \otimes^− U_j, A) \)
Algebras in monoidal categories

Algebra \(\equiv \text{monoid} \) in \(C \):

\[A = \left(\begin{array}{c}
\|,
\cup,
\downarrow
\end{array} \right) \quad \text{s.t.} \quad \begin{array}{c}
\begin{array}{c}
\uparrow
\rightarrow
\downarrow
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\uparrow
\rightarrow
\downarrow
\end{array}
\end{array} \quad \quad \begin{array}{c}
\begin{array}{c}
\uparrow
\rightarrow
\downarrow
\end{array}
\end{array} = \begin{array}{c}
\begin{array}{c}
\uparrow
\rightarrow
\downarrow
\end{array}
\end{array}\]
Algebras in monoidal categories

Algebra (≡ monoid) in \(\mathcal{C} \):

\[
A = (|, \bigtriangleup, \downarrow) \quad \text{s.t.}
\]

Frobenius algebra: also a co**algebra**

\[
\text{Diagram}
\]
Algebras in monoidal categories

Algebra (≡ monoid) in \(\mathcal{C} \):

\[
A = (\cdot, \cdot, \cdot) \quad \text{s.t.}
\]

Frobenius algebra: also a *co algebra*

with coproduct a bimodule morphism:
Algebras in monoidal categories

Algebra (≡ monoid) in \(C \):

\[A = (\underline{\ }, \underline{\cup}, \underline{\sqcap}) \text{ s.t. } \]

\[\begin{array}{c}
\text{symmetric Frobenius algebra:} \\
A^\vee = \\
A
\end{array} \]

for \(C \) rigid
Algebras in monoidal categories

Algebra (≡ monoid) in \(C \):

\[
A = \left(\begin{array}{c}
\mid, \\
\bigcirc, \\
\downarrow
\end{array} \right)
\]

s.t.

\[
\begin{array}{c}
\text{symmetric Frobenius algebra:} \\
A^\vee = \quad = \\
A
\end{array}
\]

for \(C \) rigid

special Frobenius algebra:

\[
\begin{array}{c}
\neq 0 \\
\sim \text{ strongly separable}
\end{array}
\]
RCFT and Frobenius algebras

▷ algebras A label the phases of a CFT with given \mathcal{C}
▷ Morita equivalent algebras describe equivalent CFT phases
RCFT and Frobenius algebras

- algebras A label the phases of a CFT with given \mathcal{C}
- Morita equivalent algebras describe equivalent CFT phases

Indeed:

Phases of RCFT with category \mathcal{C} of chiral sectors
\[\leftrightarrow \] bicategory $\mathcal{SSFA}_\mathcal{C}$ of symmetric special Frobenius algebras in \mathcal{C}
RCFT and Frobenius algebras

- algebras A label the phases of a CFT with given C
- Morita equivalent algebras describe equivalent CFT phases

Indeed:

Phases of RCFT with category C of chiral sectors

\[\cong \text{bicategory } \mathcal{SSF}_{A} \text{ of symmetric special Frobenius algebras in } C \]

...to be discussed later on (details still to be explored)

Instead:

- select a phase = a symmetric special Frobenius algebra A in C
- study the RCFT phase with the help of
 - the categories \mathcal{C}_{A} (A-modules) and $\mathcal{C}_{A} A$ (A-bimodules)
 - and with tools from \mathcal{C}-decorated 3-d TFT
RCFT and Frobenius algebras

- algebras A label the phases of a CFT with given C
- Morita equivalent algebras describe equivalent CFT phases

Indeed:

Phases of RCFT with category C of chiral sectors

\iff bicategory $SSFA_{C}$ of symmetric special Frobenius algebras in C

to be discussed later on (details still to be explored)

Instead:

- select phases = symmetric special Frobenius algebras A, B, \ldots in C
- study the RCFT phases with the help of
 the categories C_{A} (A-modules) and $C_{A|B}$ (A-B-bimodules)
 and with tools from C-decorated 3-d TFT
Frobenius algebras: Sample results

- For A a symmetric special Frobenius algebra in a modular tensor category C:
 - A Azumaya $\iff C_{A|A} \simeq C_A$
 - A Azumaya \implies exact sequence $1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C)$

- **Theorem [S:7]**: exact sequence $1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C_{A|A})$

- **Theorem [C:4.8]**: C rigid monoidal, A special Frobenius algebra in C
 - \implies every $M \in \text{Obj}(C_A)$ is a submodule of $\text{Ind}_A(U)$ for a suitable $U \in \text{Obj}(C)$

- **Theorem [D:4.10]**: C modular, A simple symmetric special Frobenius algebra in C
 - \implies every $X \in \text{Obj}(C_{A|A})$ is a sub-bimodule of $U \otimes^+ A \otimes^- V$ for suitable $U, V \in \text{Obj}(C)$

- **Theorem [III:3.6]**: The number of Morita classes of simple symmetric special Frobenius algebras in a modular tensor category C is finite
Frobenius algebras: Sample results

- For A a symmetric special Frobenius algebra in a modular tensor category C:
 - A Azumaya $\iff C_{A|A} \cong C_{A|}$
 - A Azumaya \implies exact sequence $1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C)$
 \[
 \text{[Van Oystaeyen – Zhang 1998]}
 \]

- **Theorem** [S:7]: exact sequence $1 \to \text{Inn}(A) \to \text{Aut}(A) \to \text{Pic}(C_{A|A})$

- **Theorem** [C:4.8]: C rigid monoidal, A special Frobenius algebra in C
 \implies every $M \in \text{Obj}(C_{A|})$ is a submodule of $\text{Ind}_A(U)$ for a suitable $U \in \text{Obj}(C)$

- **Theorem** [D:4.10]: C modular, A simple symmetric special Frobenius algebra in C
 \implies every $X \in \text{Obj}(C_{A|A})$ is a sub-bimodule of $U \otimes^+ A \otimes^- V$ for suitable $U, V \in \text{Obj}(C)$

- **Theorem** [III:3.6]: The number of Morita classes of simple symmetric special Frobenius algebras in a modular tensor category C is finite

Convenient tool: graphical presentation of morphisms
Lemma [I:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent.
Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta) \circ (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

$$= \ldots$$

$$= (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \Delta) \circ (\tilde{b} \otimes \text{id} \otimes \text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

$$= \ldots$$

$$= (\text{id} \otimes \tilde{d}) \circ (c_{A,A}^{-1} \otimes d \otimes \text{id}) \circ (\text{id} \otimes c_{A,A^\vee}^{-1} \otimes \text{id} \otimes \text{id}^\vee) \circ (\text{id} \otimes \text{id}^\vee \otimes m \otimes m \otimes \text{id}^\vee) \circ (\text{id} \otimes \tilde{b} \otimes \Delta \otimes d \otimes b) \circ (c_{A,A^\vee}^{-1} \otimes c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

$$= \ldots$$

$$= (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \text{id} \otimes m) \circ (\Delta \otimes \text{id}) \circ \Delta$$

$$= \ldots$$

$$= \ldots$$

$$= P$$
Graphical proofs: An illustration

Lemma [1:5.2]: For any symmetric special Frobenius algebra \(A \) in a ribbon category \(C \) the morphism

\[
P := (\text{id} \otimes d) \circ (c_{A,A \vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)
\]

is an idempotent
Lemma [1:5.2]: For any symmetric special Frobenius algebra \(A \) in a ribbon category \(C \) the morphism

\[P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta) = \]

is an idempotent

Proof:

\[P \circ P = \]
Lemma \([1:5.2]\) : For any symmetric special Frobenius algebra \(A\) in a ribbon category \(C\) the morphism
\[
P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)
\]
is an idempotent

Proof:

\[
P \circ P = \quad = \quad =
\]
Graphical proofs: An illustration

Lemma [I:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = \quad =$$
Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent.
Graphical proofs: An illustration

Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (id \otimes d) \circ (c^{-1}_{A,A^\vee} \otimes id) \circ (id^\vee \otimes m \otimes id) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = \quad = \quad$$
Graphical proofs: An illustration

Lemma\footnote{I:5.2} : For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes \mu \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof :

$$P \circ P =$$

\[\begin{array}{c}
\begin{array}{c}
\text{Diagram 1} \\
\end{array}
\end{array} \quad = \quad \begin{array}{c}
\begin{array}{c}
\text{Diagram 2} \\
\end{array}
\end{array} \]
Graphical proofs: An illustration

Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = 3 = 3$$
Graphical proofs: An illustration

Lemma [I:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (id \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes id) \circ (id^\vee \otimes m \otimes id) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = \quad =$$
Graphical proofs: An illustration

Lemma [1.5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P = \quad = \quad =$$

```
  \fbox{3}  \quad \fbox{3}  \quad \fbox{3}
```
Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

$$P := (id \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes id) \circ (id^\vee \otimes m \otimes id) \circ (\tilde{b} \otimes \Delta)$$

is an idempotent

Proof:

$$P \circ P =$$

- $\;$
- $\;$
- $\;$
- $\;$
Lemma [1:5.2]: For any symmetric special Frobenius algebra A in a ribbon category C the morphism

\[P := (\text{id} \otimes d) \circ (c_{A,A^\vee}^{-1} \otimes \text{id}) \circ (\text{id}^\vee \otimes m \otimes \text{id}) \circ (\tilde{b} \otimes \Delta) \]

is an idempotent

Proof:

\[P \circ P = \cdots = P \]
RCFT and Frobenius algebras II

- algebras A label the phases of a CFT with given C
- Morita equivalent algebras describe equivalent CFT phases

Indeed:

Phases of RCFT with category C of chiral sectors
\[\leftrightarrow \text{bicategory } \mathcal{SSF}_A \] of symmetric special Frobenius algebras in C

to be discussed later on

Instead:
- select phases $= \text{symmetric special Frobenius algebras } A, B, \ldots \text{ in } C$
- study the RCFT phases with the help of
 the categories \mathcal{C}_A (A-modules) and $\mathcal{C}_{A|B}$ (A-B-bimodules)
 and with tools from C-decorated 3-d TFT
algebras A label the phases of a CFT with given C

Morita equivalent algebras describe equivalent CFT phases

Indeed:

Phases of RCFT with category C of chiral sectors
\[\mathcal{SSFAC} \]

bicategory of symmetric special Frobenius algebras in C

to be discussed later on

Instead:

select phases = symmetric special Frobenius algebras A, B, \ldots in C

study the RCFT phases with the help of

the categories C_A (A-modules) and C_{AB} (A-B-bimodules)

and with tools from C-decorated 3-d TFT

concretely:
correlators as invariants of ribbon graphs in three-manifolds
CFT correlators

- **Correlator** *(correlation function, amplitude)* $\text{Cor}(Y)$ for a world sheet Y
 - multilinear map from appropriate product of state spaces to \mathbb{C}
 - depending on insertion points, moduli of Y and chiral data of field insertions
 - \rightsquigarrow map from world sheets to elements of spaces of conformal blocks
 - satisfying consistency conditions ("factorization/sewing", "modular invariance")
 - \triangleq extension to stable curves / action of mapping class group
 - section in appropriate sheaf of conformal blocks
CFT correlators

- **Correlator** (*correlation function, amplitude*) $\text{Cor}(Y)$ for a world sheet Y
 - multilinear map from appropriate product of state spaces to \mathbb{C}
 - depending on insertion points, moduli of Y and chiral data of field insertions
 - \rightsquigarrow map from world sheets to elements of spaces of conformal blocks
 - satisfying consistency conditions ("factorization/sewing", "modular invariance")
 - \triangleq extension to stable curves / action of mapping class group
 - \rightsquigarrow section in appropriate sheaf of conformal blocks

- Combinatorial part:
 - space of conformal blocks as state space of decorated 3-d TFT tft_C
 - $\text{Cor}(Y)$ as specific vector in this state space
 - consistency conditions \rightsquigarrow system of correlators as monoidal natural transformation
CFT correlators

- **Correlator** (*correlation function, amplitude*) $\text{Cor}(Y)$ for a world sheet Y
 - multilinear map from appropriate product of state spaces to \mathbb{C}
 depending on insertion points, moduli of Y and chiral data of field insertions
 \leadsto map from world sheets to elements of spaces of conformal blocks
 - satisfying consistency conditions ("factorization/sewing", "modular invariance"
 \cong extension to stable curves/action of mapping class group)
 - section in appropriate sheaf of conformal blocks

- Combinatorial part:
 - space of conformal blocks as state space of decorated 3-d TFT tft_C
 - $\text{Cor}(Y)$ as specific vector in this state space
 - consistency conditions \leadsto system of correlators as monoidal natural transformation
 \leadsto I. Runkel's talk

- Strategy for computing $\text{Cor}(Y)$:
 - associate to Y a three-manifold M_Y with embedded ribbon graph
 regarded as cobordism $M_Y : \emptyset \to \partial M_Y$
 - use 3-d TFT to assign to M_Y an element of the vector space $\text{tft}_C(\partial M_Y)$:
 $$\text{Cor}(Y) = \text{tft}_C(M_Y) 1$$
TFT construction of CFT correlators

- Construction of $\text{Cor}(Y) = \text{tft}_C(M_Y)$:

 - slightly involved
TFT construction of CFT correlators

Construction of $\text{Cor}(Y) = \text{tft}_C(M_Y)$:

- Basic ingredients of the ribbon graph
- Dictionary $\text{CFT} \leftrightarrow C, C_{A|}, C_{A|B}$ (→ more ingredients)
- Example: torus partition function and Klein bottle partition function
- References
TFT construction of CFT correlators

- Construction of \(\text{Cor}(Y) = \text{tft}_C(M_Y) \) :

- Construction of the three-manifold \(M_Y \) :
 - connecting manifold = interval bundle over \(Y \) modulo identification over \(\partial Y \)
 - \(Y \) embedded as \(M_Y \supset Y \times \{ t = 0 \} \)
 - \(\partial M_Y = \hat{Y} = \text{double of } Y \)
 = orientation bundle over \(Y \) modulo identification over \(\partial Y \)

Example: \(Y \) oriented, \(\partial Y = \emptyset \) \(\implies \hat{Y} = Y \sqcup -Y \)
TFT construction of CFT correlators

- Construction of \(\text{Cor}(Y) = \text{tft}_C(M_Y) \):

- Construction of the three-manifold \(M_Y \):
 - connecting manifold = interval bundle over \(Y \) modulo identification over \(\partial Y \)
 - \(Y \) embedded as \(M_Y \supset Y \times \{ t=0 \} \)
 - \(\partial M_Y = \hat{Y} = \text{double of } Y \)

- Construction of ribbon graph in \(M_Y \):
 - cotriangulate the world sheet (trivalent vertices)
 - label edges (ribbons) on \(Y \setminus \partial Y \) by \(A \)
 - label vertices (coupons) in \(Y \setminus \partial Y \) by product / coproduct morphisms
TFT construction of CFT correlators

- Construction of \(\text{Cor}(Y) = \text{tft}_C(M_Y) 1\):

- Construction of the three-manifold \(M_Y\):
 - connecting manifold = interval bundle over \(Y\) modulo identification over \(\partial Y\)
 - \(Y\) embedded as \(M_Y \supset Y \times \{t=0\}\)
 - \(\partial M_Y = \hat{Y} = \text{double of } Y\)

- Construction of ribbon graph in \(M_Y\):
 - cotriangulate the world sheet (trivalent vertices)
 - label edges (ribbons) on \(Y \setminus \partial Y\) by \(A\)
 - label vertices (coupons) in \(Y \setminus \partial Y\) by product / coproduct morphisms

[Diagram of a ribbon graph with labels and arrows indicating connections between \(A\) and vertices.]
TFT construction of CFT correlators

- Construction of \(\text{Cor}(Y) = \text{tft}_C(M_Y) \):

- Construction of the three-manifold \(M_Y \):
 - connecting manifold = interval bundle over \(Y \) modulo identification over \(\partial Y \)
 - \(Y \) embedded as \(M_Y \supset Y \times \{ t=0 \} \)
 - \(\partial M_Y = \hat{Y} = \text{double of } Y \)

- Construction of ribbon graph in \(M_Y \):
 - cotriangulate the world sheet (trivalent vertices)
 - label edges (ribbons) on \(Y \setminus \partial Y \) by \(A \)
 - label vertices (coupons) in \(Y \setminus \partial Y \) by product/coproduct morphisms

Properties of \(A \) (symmetric, special, Frobenius)

\(\iff \) correlators \(\text{Cor}(Y) \) (without boundary/without field insertions)
 independent of all choices and satisfy all consistency constraints
Dictionary

CFT phases	\leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}	
chiral sectors	\leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$	
boundary conditions	\leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_{A	})$
boundary fields $\psi_{i}^{MM'}$	\leftrightarrow module morphisms $\text{Hom}_{A}(M \otimes U_{i}, M')$	
topol. defect lines	\leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A	B})$
defect fields $\Theta_{ij}^{XX'}$	\leftrightarrow bimodule morphisms $\text{Hom}_{A	B}(U_{i} \otimes_{+} X \otimes_{-} U_{j}, X')$
Dictionary

CFT phases \leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}

chiral sectors \leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$

boundary conditions \leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_A)$

boundary fields $\psi^M_{MM'}$ \leftrightarrow module morphisms $\text{Hom}_A(M \otimes U_i, M')$

topol. defect lines \leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A|B})$

defect fields $\theta^{XX'}_{ij}$ \leftrightarrow bimodule morphisms $\text{Hom}_{A|B}(U_i \otimes^+ X \otimes^- U_j, X')$

Left module:

\[M = \left(\begin{array}{cc} | & \phi \end{array} \right) \quad \text{s.t.} \quad = \]

\[= \]
Dictionary

<table>
<thead>
<tr>
<th>CFT phases</th>
<th>\leftrightarrow symmetric special Frobenius algebras A in C</th>
</tr>
</thead>
<tbody>
<tr>
<td>chiral sectors</td>
<td>\leftrightarrow objects $U \in \text{Obj}(C)$</td>
</tr>
<tr>
<td>boundary conditions</td>
<td>\leftrightarrow A-modules $M \in \text{Obj}(C_A)$</td>
</tr>
<tr>
<td>boundary fields $\Psi_i^{MM'}$</td>
<td>\leftrightarrow module morphisms $\text{Hom}_A(M \otimes U_i, M')$</td>
</tr>
<tr>
<td>topol. defect lines</td>
<td>\leftrightarrow A-B-bimodules $X \in \text{Obj}(C_{A</td>
</tr>
<tr>
<td>defect fields $\Theta_{ij}^{XX'}$</td>
<td>\leftrightarrow bimodule morphisms $\text{Hom}_{A</td>
</tr>
</tbody>
</table>

Category of left A-modules in C:

- **Objects** $M = (\hat{M}, \rho_M)$
- **Morphisms** $f \in \text{Hom}(\hat{M}, \hat{N})$ s.t. $\rho_M \circ f = \rho_N$
Dictionary

CFT phases \leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}

chiral sectors \leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$

boundary conditions \leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_A)$

boundary fields $\psi_i^{MM'}$ \leftrightarrow module morphisms $\text{Hom}_A(M \otimes U_i, M')$

topol. defect lines \leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A|B})$

defect fields $\Theta_{ij}^{XX'}$ \leftrightarrow bimodule morphisms $\text{Hom}_{A|B}(U_i \otimes^+ X \otimes^- U_j, X')$

Braiding on \mathcal{C}

$\triangleright\triangleright$ \otimes^+-induced left A-module:

$$(U \otimes A, (\text{id}_U \otimes m) \circ (c_{U,A}^{-1} \otimes \text{id}_A))$$
Dictionary

CFT phases \leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}

chiral sectors \leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$

boundary conditions \leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_{A\mid})$

boundary fields $\psi^M_{MM'}$ \leftrightarrow module morphisms $\text{Hom}_A(M \otimes U_i, M')$

topol. defect lines \leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A\mid B})$

defect fields $\Theta^X_{ij}X'$ \leftrightarrow bimodule morphisms $\text{Hom}_{A\mid B}(U_i \otimes^+ X \otimes^- U_j, X')$

Braiding on \mathcal{C}

\implies \otimes^--induced left A-module:

$$(U \otimes A, (\text{id}_U \otimes m) \circ (c_{A,U} \otimes \text{id}_A))$$
Dictionary

CFT phases \leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}

chiral sectors \leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$

boundary conditions \leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_A)$

boundary fields $\psi_{iMM'}^i \leftrightarrow$ module morphisms $\text{Hom}_A(M \otimes U_i, M')$

topol. defect lines \leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A|B})$

defect fields $\Theta_{ij}^{XX'} \leftrightarrow$ bimodule morphisms $\text{Hom}_{A|B}(U_i \otimes^+ X \otimes^- U_j, X')$

\otimes^\pm-induced bimodules:

Analogously:

$U \otimes^+ A \otimes^- V$

$U \otimes^+ X \otimes^- V$
Dictionary

<table>
<thead>
<tr>
<th>Concept</th>
<th>Correspondence</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFT phases</td>
<td>symmetric special Frobenius algebras (A) in (\mathcal{C})</td>
</tr>
<tr>
<td>chiral sectors</td>
<td>objects (U \in \text{Obj}(\mathcal{C}))</td>
</tr>
<tr>
<td>boundary conditions</td>
<td>(A)-modules (M \in \text{Obj}(\mathcal{C}_{A</td>
</tr>
<tr>
<td>boundary fields</td>
<td>module morphisms (\text{Hom}_A(M \otimes U_i, M'))</td>
</tr>
<tr>
<td>topol. defect lines</td>
<td>(A-B)-bimodules (X \in \text{Obj}(\mathcal{C}_{A</td>
</tr>
<tr>
<td>defect fields</td>
<td>bimodule morphisms (\text{Hom}_{A</td>
</tr>
<tr>
<td>bulk fields</td>
<td>bimodule morphisms (\text{Hom}_{A</td>
</tr>
</tbody>
</table>

i.e. bulk fields are special defect fields, attached to ‘invisible’ defect lines
Dictionary

CFT phases \leftrightarrow symmetric special Frobenius algebras A in \mathcal{C}

chiral sectors \leftrightarrow objects $U \in \text{Obj}(\mathcal{C})$

boundary conditions \leftrightarrow A-modules $M \in \text{Obj}(\mathcal{C}_A)$

boundary fields $\psi_i^M M' \leftrightarrow$ module morphisms $\text{Hom}_A(M \otimes U_i, M')$

topol. defect lines \leftrightarrow A-B-bimodules $X \in \text{Obj}(\mathcal{C}_{A|B})$

defect fields $\Theta_{ij}^{X X'} \leftrightarrow$ bimodule morphisms $\text{Hom}_{A|B}(U_i \otimes^+ X \otimes^- U_j, X')$

bulk fields $\Phi_{ij} \leftrightarrow$ bimodule morphisms $\text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$

i.e. bulk fields are special defect fields, attached to ‘invisible’ defect lines

CFT on unoriented world sheet \leftrightarrow Jandl algebra (braided version of algebra with involution)
The torus partition function

Partition functions: correlators without field insertions
The torus partition function

- Torus partition function

\[\text{Cor}(T; \theta) = T \times [-1,1] \]

also e.g.

- Klein bottle partition function

\[\text{Cor}(K; \theta) = I \times S^1 \times I / \sim \]

\[(r, \phi)_{\text{top}} \sim (\frac{1}{r}, -\phi)_{\text{bottom}} \]
The torus partition function

- Torus partition function

\[\text{Cor}(T; \emptyset) = T \times [-1,1] \]

\[Z_{i,j} = i \quad A \quad j \]

- Klein bottle partition function

\[\text{Cor}(K; \emptyset) = I \times S^1 \times I / \sim \]

\[(r,\phi)_{\text{top}} \sim (\frac{1}{r},-\phi)_{\text{bottom}} \]

\[K_j = j \quad A \quad j \]
The torus partition function

For A a symmetric special Frobenius algebra in a modular tensor category C:

- **Theorem** [1:5.1]:
 The coefficients $Z_{i,j}$ of $\text{Cor}(T; \emptyset) = \sum_{i,j \in \mathcal{I}} Z_{i,j} |\chi_i, T\rangle \otimes |\chi_j, -T\rangle$

 satisfy $[\Gamma, Z] = 0$ for $\Gamma \in \text{SL}(2, \mathbb{Z})$

 and $Z_{i,j} = \dim \mathbb{C} \text{Hom}_A(U_i \otimes^+ A \otimes^+ U_j, A) \in \mathbb{Z}_{\geq 0}$
The torus partition function

For A a symmetric special Frobenius algebra in a modular tensor category C:

- **Theorem [I:5.1]**:

 The coefficients $Z_{i,j}$ of $\text{Cor}(T; \emptyset) = \sum_{i,j \in I} Z_{i,j} |\chi_i, T\rangle \otimes |\chi_j, -T\rangle$

 satisfy $[\Gamma, Z] = 0$ for $\Gamma \in \text{SL}(2, \mathbb{Z})$

 and $Z_{i,j} = \dim \mathbb{C} \text{Hom}_A(U_i \otimes^+ A \otimes^+ U_j, A) \in \mathbb{Z}_{\geq 0}$

- **recall**: is an idempotent
The torus partition function

For A a symmetric special Frobenius algebra in a modular tensor category C:

Theorem [I:5.1]:

The coefficients $Z_{i,j}$ of $\text{Cor}(T;\emptyset) = \sum_{i,j \in \mathcal{I}} Z_{i,j} \langle \chi_i, T \rangle \otimes \langle \chi_j, -T \rangle$

satisfy $[\Gamma, Z] = 0$ for $\Gamma \in \text{SL}(2,\mathbb{Z})$

and $Z_{i,j} = \text{dim}_C \text{Hom}_A(U_i \otimes^+ A \otimes^- U_j, A) \in \mathbb{Z}_{\geq 0}$

Lemma [I:5.2]:

is an idempotent
The torus partition function

For A a symmetric special Frobenius algebra in a modular tensor category C:

- **Theorem [I:5.1]**: The coefficients $Z_{i,j}$ of $\text{Cor}(T; \emptyset) = \sum_{i,j \in I} Z_{i,j} |\chi_i, T\rangle \otimes |\chi_j, -T\rangle$

 satisfy $[\Gamma, Z] = 0$ for $\Gamma \in \text{SL}(2, \mathbb{Z})$

 and $Z_{i,j} = \dim \mathcal{C} \text{Hom}_A(U_i \otimes^+ A \otimes U_j, A) \in \mathbb{Z}_{\geq 0}$

- **Propos. [I:5.3]**: $Z^{A \oplus B} = Z^A + Z^B$, $\tilde{Z}^{A \otimes B} = \tilde{Z}^A \tilde{Z}^B$, $Z^{A^{\text{opp}}} = (Z^A)^t$

- **Theorem [II:3.7]**: The coefficients K_j of $\text{Cor}(K; \emptyset) = \sum_{j \in I} K_j |\chi_j, T\rangle$

 satisfy $K_j \in \mathbb{Z}$, $K_j = K_{\bar{j}}$, $\frac{1}{2} (Z_{jj} + K_j) \in \{0, 1, \ldots, Z_{jj}\}$
The torus partition function

For A a symmetric special Frobenius algebra in a modular tensor category C:

- **Theorem [I:5.1]:**

 The coefficients $Z_{i,j}$ of $\text{Cor}(T; \emptyset) = \sum_{i,j \in I} Z_{i,j} |\chi_i, T\rangle \otimes |\chi_j, -T\rangle$

 satisfy $[\Gamma, Z] = 0$ for $\Gamma \in \text{SL}(2, \mathbb{Z})$

 and $Z_{i,j} = \dim \text{Hom}_A |A(U_i \otimes^+ A \otimes^- U_j, A) \in \mathbb{Z}_{\geq 0}$

- **Propos. [I:5.3]:**

 $\tilde{Z}^A \oplus B = \tilde{Z}^A + Z^B$, $\tilde{Z}^A \otimes B = \tilde{Z}^A \tilde{Z}^B$, $Z^{A^{opp}} = (Z^A)^t$

- **Theorem [II:3.7]:**

 The coefficients K_j of $\text{Cor}(K; \emptyset) = \sum_{j \in I} K_j |\chi_j, T\rangle$

 satisfy $K_j \in \mathbb{Z}$, $K_j = K_{\overline{j}}$, $\frac{1}{2} (Z_{jj} + K_j) \in \{0, 1, \ldots, Z_{jj}\}$

Special case:

"C-diagonal CFT" $A = 1 \implies Z_{i,j} = \delta_{i,j}$ [Felder-F-F-S 2002]

$K_j = \begin{cases}
\pm 1 & \text{if } j = \overline{j} \\
0 & \text{else}
\end{cases}$ (F-S indicator)
References

J F, Ingo Runkel, Christoph Schweigert:

TFT construction of RCFT correlators
Categorification and ... in CFT Proceedings ICM 2006 443–458 math.CT/0602079

& Jens Fjelstad:

Uniqueness of open/closed rational CFT ...

& Jürg Fröhlich:

References

J F, Ingo Runkel, Christoph Schweigert:

TFT construction of RCFT correlators

I: Partition functions
hep-th/0204148

II: Unoriented world sheets
hep-th/0306164

III: Simple currents
hep-th/0403157

IV: Structure constants and correlation functions
hep-th/0412290

Categorification and ... in CFT
Proceedings ICM 2006 443–458
math.CT/0602079

& Jens Fjelstad:

V: Proof of modular invariance and factorisation
hep-th/0503194

Uniqueness of open/closed rational CFT ...
hep-th/0612306

& Jürg Fröhlich:

Correspondences of ribbon categories
math.CT/0309465

Duality and defects in RCFT
hep-th/0607247
Non-rational CFT

- **Problem**: representation theory of non-rational vertex algebras complicated
 - much recent progress e.g. [Huang–Lepowsky–Zhang 2003/2006]
 - but still far from having a good characterization of \(\text{Rep}(\mathcal{V}) \)
 for any class of non-rational CFTs

- **Idea**: formalize aspects of general CFTs directly at combinatorial level
 (forget about \(A \), keep \(C_{A|} \) and \(C_{A|B} \))
The bicategory $SSF_A C$

- Tensor product \otimes of $C \mapsto$ bifunctor $C_{A|} \times C \to C_{A|} \quad (C \text{ monoidal})$

- Tensor product $\otimes_A \mapsto$ bifunctor $C_{A|A} \times C_{A|} \to C_{A|} \quad (C \text{ abelian})$

(A algebra in C)
The bicategory SSF_A_C

- Tensor product \otimes of $C \implies$ bifunctor $C_{|A|} \times C \to C_{|A|}$ (C monoidal)
- Tensor product \otimes_A \implies bifunctor $C_{|A|A} \times C_{|A|} \to C_{|A|}$ (C abelian)

$\implies C_{|A|}$ right module category over C
and left module category over $C_{|A|A}$
The bicategory $\mathcal{SSF}A_C$

- Tensor product \otimes of C \implies bifunctor $C_A| \times C \to C_A|$.

- Tensor product \otimes_A \implies bifunctor $C_{A|A} \times C_{A|} \to C_{A|}$.

- More generally: Bifunctors $C_{A|B} \times C_{B|C} \to C_{A|C}$ ($C_{A|} \equiv C_{A|1}$, $C \equiv C_{1|1}$).
The bicategory \mathcal{SSF}_{A_C}

- Tensor product \otimes of \mathcal{C} \implies bifunctor $\mathcal{C}_{A|} \times \mathcal{C} \rightarrow \mathcal{C}_{A|}$

- Tensor product \otimes_A \implies bifunctor $\mathcal{C}_{A|A} \times \mathcal{C}_{A|} \rightarrow \mathcal{C}_{A|}$

- More generally: Bifunctors $\mathcal{C}_{A|B} \times \mathcal{C}_{B|C} \rightarrow \mathcal{C}_{A|C}$ furnish horizontal composition for a bicategory

 - objects = algebras A in \mathcal{C}
 - 1-cells = bimodules $\text{Obj}(\mathcal{C}_{A|B})$ (\mathcal{C} small)
 - 2-cells = bimodule morphisms
The bicategory $\text{SSF}_A C$

- Tensor product \otimes of $C \implies$ bifunctor $C_{A|} \times C \rightarrow C_{A|}$
- Tensor product $\otimes_A \implies$ bifunctor $C_{A|A} \times C_{A|} \rightarrow C_{A|}$

- More generally: Bifunctors $C_{A|B} \times C_{B|C} \rightarrow C_{A|C}$ furnish horizontal composition for the bicategory $\text{SSF}_A C$

 - objects = symmetric special Frobenius algebras A in C
 - 1-cells = bimodules $\text{Obj}(C_{A|B})$ (C small)
 - 2-cells = bimodule morphisms
The bicategory $SSFA_C$

- Tensor product \otimes of $C \implies$ bifunctor $C_{A|} \times C \to C_{A|}$

- Tensor product \otimes_A \implies bifunctor $C_{A|A} \times C_{A|} \to C_{A|}$

- More generally: Bifunctors $C_{A|B} \times C_{B|C} \to C_{A|C}$
 furnish horizontal composition for bicategory $SSFA_C$
 with objects = symmetric special Frobenius algebras A in C
 1-cells = bimodules $\text{Obj}(C_{A|B})$ (C small)
 2-cells = bimodule morphisms

- Conversely: \mathcal{M} semisimple indecomposable
 right module category over modular tensor category C
 \implies
 $\mathcal{M} \simeq C_{A|}$ for an algebra A in C (unique up to Morita equivalence, obtainable as End) [Ostrik 2003]
The bicategory \mathcal{SSF}_A^C

- Tensor product \otimes of $C \Rightarrow$ bifunctor $C_A| \times C \rightarrow C_A|
- Tensor product $\otimes_A \Rightarrow$ bifunctor $C_A A \times C_A| \rightarrow C_A|

- More generally: Bifunctors $C_A B \times C_B|C \rightarrow C_A|C$
 furnish horizontal composition for bicategory \mathcal{SSF}_A^C
 with objects = symmetric special Frobenius algebras A in C
 1-cells = bimodules $Obj(C_A|B)$ (for C small)
 2-cells = bimodule morphisms

- Conversely: \mathcal{M} semisimple indecomposable
 right module category over modular tensor category C

 $\Rightarrow \mathcal{M} \cong C_A|$ for an algebra A in C
 (unique up to Morita equivalence, obtainable as End)
 [Ostrik 2003]

 $\Rightarrow C_A A \cong \mathcal{Fun}_C(\mathcal{M}, \mathcal{M}) = \text{category of module endofunctors of } \mathcal{M}$

 $\Rightarrow A$ symmetric special Frobenius
 (\cong some obscure property of \mathcal{M})

 $\Rightarrow K_0(C_A A) \otimes \mathbb{Z} \cong \bigoplus_{i,j \in \mathcal{I}} \text{End}_C(\text{Hom}_{A|A}(U_i \otimes^+ A \otimes^− U_j, A))$

 recall: $\dim \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^− U_j, A) = Z_{i,j}$
The bicategory \mathcal{P}_C

In RCFT:

- Bicategory $\mathcal{P}_C \simeq SS\mathcal{F}A_C$
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{C}_{A|B})$
 - 2-cells = defect fields

- Boundary conditions form module categories $\mathcal{C}_{A|}$

$$\mathcal{C}_{A|A} \xrightarrow{\otimes_A} \mathcal{C}_{A|} \xleftarrow{\otimes} \mathcal{C}$$
The bicategory \mathcal{P}

In CFT expect:

- **Bicategory** \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

- **Boundary conditions form module categories** $\mathcal{M}_{A|A}$

 $\mathcal{D}_{A|A} \longrightarrow \mathcal{M}_{A|A}$
The bicategory P

In CFT expect:

- **Bicategory P**
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

- **Boundary conditions form module categories $\mathcal{M}_{A|}$**
 - $\mathcal{D}_{A|A} \longrightarrow \mathcal{M}_{A|}$

- objects = boundary conditions adjacent to phase A
- morphisms = boundary fields
In CFT expect:

- Bicategory \(\mathcal{P} \) with objects = phases \(A \) of the CFT
 - 1-cells = topological defect lines \(\text{Obj}(\mathcal{D}_{A|B}) \)
 - 2-cells = defect fields

- Boundary conditions form module categories \(\mathcal{M}_{A|} \)
 \[\mathcal{D}_{A|A} \longrightarrow \mathcal{M}_{A|} \]

- Naturally associated to \(D \equiv \mathcal{D}_{A|A} \) and \(\mathcal{M} \equiv \mathcal{M}_{A|} \): \(\text{Fun}_D(\mathcal{M}, \mathcal{M}) \)

- Also expect: special phase \(I \) s.t. \(\text{Fun}_D(\mathcal{M}, \mathcal{M}) \simeq \mathcal{D}_{I|I} \simeq \text{Rep}(\mathcal{V}) \)
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

- Boundary conditions form module categories $\mathcal{M}_{A|}$
 $\mathcal{D}_{A|A} \longrightarrow \mathcal{M}_{A|} \longleftarrow \mathcal{D}_{I|I}$

- naturally associated to $\mathcal{D} \equiv \mathcal{D}_{A|A}$ and $\mathcal{M} \equiv \mathcal{M}_{A|}$: $\text{Fun}_\mathcal{D}(\mathcal{M}, \mathcal{M})$

- also expect: special phase I s.t. $\text{Fun}_\mathcal{D}(\mathcal{M}, \mathcal{M}) \simeq \mathcal{D}_{I|I} \simeq \text{Rep}(\mathcal{V})$
 $\mathcal{M}_{A|} \simeq \mathcal{D}_{A|I}$
The bicategory \(\mathcal{P} \)

In CFT expect:

- Bicategory \(\mathcal{P} \)
 - objects = phases \(A \) of the CFT
 - 1-cells = topol. defect lines \(\text{Obj}(\mathcal{D}_{A|B}) \)
 - 2-cells = defect fields

- Boundary conditions form module categories \(\mathcal{M}_{A|} \)
 \[
 \mathcal{D}_{A|A} \longrightarrow \mathcal{M}_{A|} \leftrightarrow \mathcal{D}_{I|I}
 \]

- Naturally associated to \(\mathcal{D} \equiv \mathcal{D}_{A|A} \) and \(\mathcal{M} \equiv \mathcal{M}_{A|} : \ \text{Fun}_{\mathcal{D}}(\mathcal{M}, \mathcal{M}) \)

- Also expect: special phase \(I \) s.t.
 \[
 \text{Fun}_{\mathcal{D}}(\mathcal{M}, \mathcal{M}) \simeq \mathcal{D}_{I|I} \simeq \text{Rep}(\mathcal{V})
 \]
 \[
 \mathcal{M}_{A|} \simeq \mathcal{D}_{A|I}
 \]

- Equivalence of CFT phases \(\iff \) adjunction in \(\mathcal{P} \):
 - defect lines \(X, Y \) s.t.
 \[
 A \xrightarrow{X} B \xrightarrow{Y} A \quad \text{and} \quad X \bullet Y \Rightarrow \text{id}_A, \quad Y \bullet X \Rightarrow \text{id}_B
 \]
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

Indeed:

- A-B- and B-C- defect lines can fuse to A-C- defect lines

\[\begin{array}{c}
A \quad B \quad C \\
\downarrow \quad \downarrow \quad \downarrow \\
X \quad Y \\
\end{array} \]
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

Indeed:

- A-B- and B-C-defect lines can fuse to A-C-defect lines
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects $= \text{phases } A$ of the CFT
 - 1-cells $= \text{topol. defect lines } \text{Obj}(\mathcal{D}_A|B)$
 - 2-cells $= \text{defect fields}$

Indeed:

- A-B- and B-C-defect lines can fuse to A-C-defect lines
- \rightsquigarrow horizontal composition of 1-cells
The bicategory \mathcal{P}

In CFT expect:

- **Bicategory** \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\mathcal{O}(\mathcal{D}_{A|B})$
 - 2-cells = defect fields

Indeed:

- A-B and B-C-defect lines can fuse to A-C-defect lines
 - \sim horizontal composition of 1-cells
- existence of operator products of defect fields
 - \sim horizontal and vertical composition of 2-cells
The bicategory \mathcal{P}

In CFT expect:

1. Bicategory \mathcal{P}
 - with objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_A|B)$
 - 2-cells = defect fields

Indeed:

- A-B- and B-C- defect lines can fuse to A-C- defect lines
 - \sim horizontal composition of 1-cells
- existence of operator products of defect fields
 - \sim horizontal and vertical composition of 2-cells
- associativity of operator product expansion
 - \sim associativity of composition (in particular: $\mathcal{D}_A|A$ strict monoidal)
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - with objects = phases A of the CFT
 - 1-cells = topol. defect lines $\mathcal{O}bj(D_{A|B})$
 - 2-cells = defect fields

Indeed:

- A-B- and B-C- defect lines can fuse to A-C- defect lines
 - \leadsto horizontal composition of 1-cells
- existence of operator products of defect fields
 - \leadsto horizontal and vertical composition of 2-cells
- associativity of operator product expansion
 - \leadsto associativity of composition (in particular: $D_{A|A}$ strict monoidal)
- A-B- defect lines can fuse with B- boundary conditions
 - \leadsto $\mathcal{M}_{A|A}$ module category over $D_{A|A}$
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects $= \text{phases } A$ of the CFT
 - 1-cells $= \text{topol. defect lines } \mathcal{O}bj(\mathcal{D}_{A|B})$
 - 2-cells $= \text{defect fields}$

Indeed:

- A-B- and B-C-defect lines can fuse to A-C-defect lines
 - \Rightarrow horizontal composition of 1-cells
- existence of operator products of defect fields
 - \Rightarrow horizontal and vertical composition of 2-cells
- associativity of operator product expansion
 - \Rightarrow associativity of composition (in particular: $\mathcal{D}_{A|A}$ strict monoidal)
- A-B-defect lines can fuse with B-boundary conditions
 - $\Rightarrow \mathcal{M}_{A|A}$ module category over $\mathcal{D}_{A|A}$
- Local deformations of defect lines do not affect correlators
 - \Rightarrow adjunctions $\mathcal{D}_{A|B} \leftrightarrow \mathcal{D}_{B|A}$ (in particular: $\mathcal{D}_{A|A}$ rigid)
The bicategory \mathcal{P}

In CFT expect:

- Bicategory \mathcal{P}
 - objects = phases A of the CFT
 - 1-cells = topol. defect lines $\text{Obj}(\mathcal{D}_A|_B)$
 - 2-cells = defect fields

However:

- most details still to be worked out
- so far no new insight
Outlook

BETTER TRY TO WORK FROM BOTH SIDES
Outlook

BETTER TRY TO WORK FROM BOTH SIDES
Outlook
TFT construction of CFT correlators

- Construction of M_Y:
 - connecting manifold = interval bundle over Y modulo identification over ∂Y
 - Y embedded as $M_Y \supset Y \times \{t=0\}$
 - $\partial M_Y = \hat{Y} = \text{double of } Y$

- Construction of ribbon graph in M_Y:
 - (no fields or defect lines, for now)
 - cotriangulate the world sheet (trivalent vertices)
 - label edges (ribbons) on $Y \setminus \partial Y$ by a symmetric special Frobenius algebra A in \mathcal{C}
 - label edges on ∂Y by A-modules M
 - label vertices (coupons) in $Y \setminus \partial Y$ by product/coproduct morphisms
 - label vertices on ∂Y by representation morphisms
TFT construction of CFT correlators

Prescription involves choices:

- Triangulation
- Insertion of ribbon graph fragment for edges (two possibilities per edge)
- Insertion of ribbon graph fragment for vertices (three possibilities per vertex)
- With field insertions, in addition certain local orientations
TFT construction of CFT correlators

Prescription involves choices:

- Triangulation
- Insertion of ribbon graph fragment for edges (two possibilities per edge)
- Insertion of ribbon graph fragment for vertices (three possibilities per vertex)
- With field insertions, in addition certain local orientations

Properties of A (symmetric, special, Frobenius)

$$\iff \text{correlators } \text{Cor}(Y) = \text{tft}_C(M_Y) 1 \text{ independent of all choices}$$
TFT construction of CFT correlators

Prescription involves choices:

- Triangulation
- Insertion of ribbon graph fragment for edges (two possibilities per edge)
- Insertion of ribbon graph fragment for vertices (three possibilities per vertex)
- With field insertions, in addition certain local orientations

Properties of A (symmetric, special, Frobenius)

$$\iff \text{correlators } Cor(Y) = tft_C(M_Y) \text{ independent of all choices and satisfy all consistency constraints (without field insertions)}$$
TFT construction of CFT correlators

Prescription involves choices:

- Triangulation
- Insertion of ribbon graph fragment for edges (two possibilities per edge)
- Insertion of ribbon graph fragment for vertices (three possibilities per vertex)
- With field insertions, in addition certain local orientations

Properties of A (symmetric, special, Frobenius)

$$\iff \text{correlators } Cor(Y) = tft_C(M_Y) 1 \text{ independent of all choices and satisfy all consistency constraints}$$

- Construction of ribbon graph in M_Y when Y has field insertions:
 - for each field have a coupon in $\iota(Y) \subset M_Y$ labelled by a morphism in C
 - coupons connected to the triangulation and to ∂M_Y
TFT construction of CFT correlators

Prescription involves choices:

- Triangulation
- Insertion of ribbon graph fragment for edges (two possibilities per edge)
- Insertion of ribbon graph fragment for vertices (three possibilities per vertex)
- With field insertions, in addition certain local orientations

Properties of A (symmetric, special, Frobenius)

\[\iff \text{correlators } \mathcal{Cor}(Y) = \text{tft}_{\mathcal{C}}(M_Y) \quad 1 \text{ independent of all choices and satisfy all consistency constraints} \]

- Construction of ribbon graph in M_Y when Y has field insertions:
 - for each field have a coupon in $\tau(Y) \subset M_Y$ labelled by a morphism in \mathcal{C}
 - coupons connected to the triangulation and to ∂M_Y

Morphisms for fields module / bimodule morphisms

\[\iff \text{correlators still independent of all choices and still satisfy all consistency constraints} \]
Example: Bulk fields

Bulk field Φ:

special defect field: ▶ “separating” phase A from phase A
▶ “changing” the trivial defect A to the trivial defect A
Example: Bulk fields

Bulk field Φ:

- coupon
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
Example: Bulk fields

Bulk field Φ: carries rep's of left and right chiral world sheet symmetries

- coupon
- connect to triangulation
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V – say U_i, U_j

 (RCFT)
Example: Bulk fields

Bulk field \(\Phi \):

- coupon
- connect to triangulation
- connect ribbons labelled by objects \(U, V \) — say \(U_i, U_j \)
- coupon labelled by morphism \(\alpha \in \text{Hom}_{A|A}(U_i \otimes A \otimes U_j, A) \)
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V – say U_i, U_j
- coupon labelled by morphism $\alpha \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A) \subseteq \text{Hom}_{A|A}(U_i \otimes A \otimes U_j, A)$
Example: Bulk fields

Bulk field Φ:

- coupon

- connect to triangulation

- connect ribbons labelled by objects U, V – say U_i, U_j

- coupon labelled by morphism $\alpha \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$

Locally, double \hat{Y} looks as
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V — say U_i, U_j
- coupon labelled by morphism $\alpha \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$

Locally, double \hat{Y} looks as
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V – say U_i, U_j
- coupon labelled by morphism $\alpha \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^+ U_j, A)$
- connect coupon to ∂M_Y
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V — say U_i, U_j
- coupon labelled by morphism $\alpha \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$
- connect coupon to ∂M_Y
Example: Bulk fields

Bulk field Φ:

- coupon
- connect to triangulation
- connect ribbons labelled by objects U, V – say U_i, U_j
- coupon labelled by morphism in $\text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$
- connect coupon to ∂M_Y
Example: Bulk fields

Bulk field $\Phi \in \text{Hom}_{A|A}(U_i \otimes A \otimes U_j, A)$
Example: Bulk fields

Bulk field $\Phi \in \text{Hom}_{A|A}(U_i \otimes^+ A \otimes^- U_j, A)$
Example: Bulk fields

Bulk field $\Phi \in \text{Hom}_{\mathcal{A}|A}(U_i \otimes^+ A \otimes^- U_j, A)$