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1 Introduction

Knots are all around us in our daily lives: our earphones get knotted, we
need knots to tie our shoelaces and even the DNA molecules are knotted in
the nuclei of our cells. The mathematical concept of a knot is inspired by
these everyday knots that we encounter, but the two ends are joined together
such that the knot cannot be undone. In a more mathematical language, a
knot is an embedding of a circle in 3-dimensional Euclidean space. Here it
is crucial to remember that in topology, the term circle does not only refer
to its classical geometric concept, but rather to all of its homeomorphisms.
A homeomorphism is a continuous function between topological spaces that
has a continuous inverse function [1]. Roughly speaking, we can see a topo-
logical space as a geometric object and the homeomorphism as a continuous
stretching and bending of the object into a new shape.

Knots can be described in many different ways, and one of the most con-
venient ways to represent them is through knot diagrams, which is a picture
of a projection of a knot onto a plane. However, we can use the Reidemeister
moves to change a knot diagram, so more than one knot diagram actually
represents the same underlying knot. Therefore, the fundamental problem
in knot theory is to determine when two descriptions actually represent the
same knot. To distinguish two knots one uses a knot invariant, namely a
”quantity” of some sort that remains the same when computed from differ-
ent descriptions of a knot. A first example of such a knot invariant is given
by Fox’s three-colouring.

However, to treat the problem of distinguishing different knots com-
pletely one needs more powerful methods. This is where the algebraic struc-
ture of a quandle comes into the picture. One can associate a fundamental
quandle to each knot, and this gives a very powerful knot invariant. How-
ever, this fundamental quandle is also very complex. Thus, in practice one
uses knot invariants like colouring of knots with the Alexander quandles or
different types of associated polynomials like the HOMFLY-polynomials to
determine whether two knot diagrams represent the same knot.

2 Knot diagrams and Reidemeister moves

As already mentioned, knots are complicated because there are so many
different ways to move them around. This gives rise to many different rep-
resentations of the same knot. Fortunately, there is a theorem that tells us
when two illustrations describe the same knot. Firstly, we need an example
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of a knot diagram to make the notion more clear. Figure 1 and 2 below
illustrate the trefoil knot and Figure 8 knot, respectively. The knot diagram
is used to view a knot as a two-dimensional figure consisting of arcs and
some crossings.

Figure 1: The trefoil knot. Figure 2: The Figure 8 knot

The three ways we are allowed to modify or change a knot diagram are
called the Reidemeister moves. Each move operates on a small region of
the diagram and the ”type” of the move corresponds to how many strands
that are involved. The first move is a twist or untwist in either direction.
The second one allows us to move one loop completely over another, while
the third is to move a string completely over or under a crossing as shown
below.

Figure 3: [4] Type 1 move. Figure 4: [4] Type 2 move.
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Figure 5: [4] Type 3 move.

In 1927 Reidemeister proved the following useful theorem corresponding
to these three moves [3].

Theorem 2.1 (Reidemeister theorem). Given two knot diagrams represent-
ing the same knot, there is a sequence of Reidemeister moves transforming
one diagram into the other.

This theorem is particularly convenient for creating knot invariants. If
one can associate some structure to a knot diagram that does not change
when applying the Reidemeister moves, we know that the structure is a knot
invariant. That is, the structure only depends on the underlying knot and
not on its representation.

3 Fox’s three-colouring

One important and simple example of a knot invariant was introduced by
Ralph Fox in the 1950’s by colouring the arcs in a knot diagram. More
specifically, we want to colour the arcs in such a way that when three arcs
meet at a crossing, they have either the same colour or three distinct colours
[3]. These two possibilities are shown below in figure 6 and 7, and a colouring
of a knot diagram satisfying one of these two conditions at each crossing is
what we call a three-colouring.

Figure 6: Same colour. Figure 7: Three different colours.
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It might appear like the three-colouring depends on the particular knot
diagram in question, rather than the underlying knot that is represented.
That is not the case. Using the Reidemeister moves we can show that a
three-colouring of one knot diagram gives a unique three-colouring of every
knot diagram of the same knot. By assigning different colours to the arcs in
figure 3-5 showing the Reidemeister moves, one sees that if the conditions
hold at each crossing, the colouring will not change. A few explicit examples
of this are shown in [3].

With this knowledge, a three-colouring can be thought of as a three-
colouring of the knot itself, and not only the knot diagram representing it.
The simple knot invariant is then given by counting the number of possible
three-colourings of a knot.

The first thing one might notice is that every knot admits the three trivial
three-colourings in which every arc has the same colour. So, the interesting
question to ask is whether a knot allows any non-trivial ones. One example
is the trefoil knot depicted in figure 1, which allows a total of six non-trivial
three-colourings [2]. Once you have found one non-trivial three-colouring,
you can permute the colours to find the remaining five. Naturally, we also
have the notion of a unknot, with a knot diagram containing of a single
arc. From this we can conclude that the trefoil knot is not the same as the
unknot, that only admits trivial three-colourings.

However, this knot invariant is not very strong. Take for instance the
Figure 8 knot that is illustrated in figure 2. It will not admit any nontrivial
three-colourings, but this does not imply that it is equivalent to the unknot.
This tells us that only counting three-colourings does not give sufficient
information to distinguish the two from each other.

3.1 Linear algebra

Before continuing with more abstract notions, it might be of interest to note
that the problem of counting three-colourings can be solved using linear
algebra. To do this, we label each arc in the knot diagram as ai along the
knot according to some chosen orientation. An example of this labeling is
shown in figure 8 below. Then we associate to the three colours an element
of the set Z3 = {0, 1, 2}. Lastly, a colouring of the knot diagram is obtained
by relating a colour to every arc ai in the diagram, i.e. ai ∈ {0, 1, 2}.
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Figure 8: Labeling of all the arcs in a knot diagram.

With this reframing of the problem, one can express the three-colouring
conditions by demanding that the equation

ai + aj + ak = 0 (1)

holds at each crossing. This makes sense since in Z3 this equation only
equals zero if ai = aj = ak or if they are pairwise distinct. Hence, writing
down the equations corresponding to the three-colouring condition at each
of the 8 intersections in the knot diagram in figure 8 gives a linear system.
Writing the coefficient matrix for this set of equations and then row reduce
to echelon form gives the matrix below [3].

x1 + x6 + x7 = 0

x1 + x2 + x7 = 0

x2 + x4 + x7 = 0

x2 + x3 + x4 = 0

x2 + x3 + x5 = 0

x3 + x5 + x6 = 0

x4 + x5 + x8 = 0

x1 + x5 + x8 = 0

⇒



1 0 0 0 0 0 0 2
0 1 0 0 0 0 1 1
0 0 1 0 0 0 2 0
0 0 0 1 0 0 0 2
0 0 0 0 1 0 0 2
0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


(2)

From this we see that the solution space is a two-dimensional subset of
(Z3)

8, which therefore has 32 = 9 elements. Hence, we conclude that there
are nine three-colourings. Three of them are trivial, and the remaining six
are obtained by permuting the colouring in the nontrivial three-colouring
shown in figure 9.
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Figure 9: One nontrivial three-colouring of the knot diagram displayed in
figure 8.

As mentioned earlier, the number of three-colourings is not a strong knot
invariant. However, this points to an important connection between algebra
and the topology of knots that will deepen with the introduction of quandles.

4 Racks and Quandles

In 1941/42, Mituhisa Takasaki introduced a new algebraic structure named
a kei, which would later be known as an involutive quandle[10]. His motiva-
tion was to find an algebraic structure that was non-associative and could
capture the notion of a reflection in the context of finite geometry. Several
years later the idea was rediscovered and generalized by the two Cambridge
students John Conway and Gavin Wraith through their (unpublished) 1959
correspondence. They investigated the idea in the context of a group that
acts upon itself through conjugation, and this gives the reason for the name
”rack”, which is the wrack or ruin of a group after the multiplication oper-
ation of the group has been dismissed. According to Wikipedia and other
sources like [10], the original name was ”wrack”, and was intended to be a
wordplay upon Wraith’s name.

The terminology introduced in David Joyce’s thesis in 1979 is the one
that is most common nowadays, and this is where the term quandle was
coined. A quandle is an algebraic structure that can be motivated by the
Reidemeister moves [3]. Now, it might be in its place to give the definition
of this structure.

Definition 4.1. A quandle, X, is a set with a binary operation (a, b) 7→ a.b
such that

(I) For any a ∈ X, a = a . a.
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(II) For any a, b ∈ X, there is a unique c ∈ X such that a = c . b.

(III) For any a, b, c ∈ X, we have (a . b) . c = (a . c) . (b . c).

In the second axiom, the element c that is uniquely determined by a, b ∈
X such that a = c . b is denoted by c = a .−1 b. One can verify that the
inverse operator .−1 also defines a quandle structure.

The first condition corresponds to the first Reidemeister move, this is
easily seen if one labels the arc in figure 3 a and uses the new binary op-
erator . to record the relationship at the crossing. Similarly, the second
condition arises from the type 2 Reidemeister move, while the distributivity
relation in (III) comes from the third Reidemeister move after some work
[3]. Hence, the quandle structure along with its operator mimics the rela-
tionship between the arcs in a knot diagram. It is important to note that
this is done with oriented knots, so we have to assign some direction be-
fore starting. Since this structure will be consistent when a Reidemeister
move is applied, we can use it to create knot invariants. However, it will be
instructive to investigate some of the properties and other structures that
come along with this definition first.

The definition of a rack is that it is a set with a binary operation that
fulfills condition (II) and (III) as they are stated for the quandle. Hence, a
quandle is actually a special type of rack. The first Reidemeister move does
not hold for a rack, but rather we have to twist and untwist to get back
what we initially started with, as is illustrated in figure 10. Because of this,
racks are a useful generalisation of quandles in topology. While quandles
can represent knots on a round linear object, racks can represent ribbons,
which may be twisted as well as knotted.

Figure 10: Twisting and untwisting for a rack.

The notion of a kei as mentioned above corresponds to an involutive
quandle, i.e. a quandle for which . = .−1. Any symmetric space gives an
involutory quandle, for which a . b is the result of reflecting b through a [5].
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For the following parts, the notion of a rack (and hence quandle) homo-
morphism will be important. It is defined as:

Definition 4.2. A rack homomorphism is a function φ : X → Y between
two racks X,Y such that

φ(a . b) = φ(a) . φ(b) ∀ a, b ∈ X. (3)

From this, the notion of a rack (and thus quandle) isomorphism also
arises:

Definition 4.3. Given two racks X and X ′, a rack isomorphism is a bijec-
tive homomorphism f : X → X ′. We then say that X is isomorphic to X ′

as a rack.

Also, it was mentioned that the initial idea for these structures arose in
the context of groups that act on themselves through conjugation. Hence,
the following example of a quandle structure should not come as a surprise.

Example 4.4. One important and simple example of a quandle is a group
X = G with n-fold conjugation as the quandle operation, i.e. a.b = bnab−n.
The quandle defined by ordinary conjugation, i.e. n = 1, is denoted Conj(G).

4.1 Alexander quandles

Another important example of a quandle structure is given by the Alexander
quandles, which can be linked to the colouring already discussed through
the concept of quandle colouring. Firstly, we can construct the Alexander
quandles by considering the set Zn of mod n congruence classes and choose
an integer t relatively prime to n. This implies that t has a multiplicative
inverse t−1 in Zn.

We then obtain the Alexander quandle Λn,t with the underlying set Zn

by defining the binary operation as

x . y := tx+ (1− t)y. (4)

Another quandle structure that is connected to the Alexander quandles is
given in the following example.

Example 4.5. The dihedral quandle Rn is defined as the set {0, 1, 2, ..., n−
1} with i . j = 2j − i (modn). This is isomorphic to the Alexander quandle
Λn,t/(t + 1), and can be identified with the set of reflections of a regular
n-gon with conjugation as the quandle operation.
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One specific Alexander quandle will be important to make the connection
between three-colourings and quandle colourings clear, so it will be given
here.

Example 4.6. Choose n = 3 and t = 2 so that the quandle operation
becomes x . y = 2x+ (1− 2)y = 2x+ 2y. This gives the Alexander quandle
Λ3,2.

5 Quandle coloring

Earlier an invariant of knots was created by colouring the arcs in a knot
diagram with one of three colours. Now, the idea is instead to ”colour” each
arc with elements of a fixed quandle X. Given a knot diagram for a knot
K, and a quandle X, an X-colouring of K is formed by labeling each arc in
the diagram with an element of X. Since the relationship between the arcs
at each crossing is recorded by the operator ., we also require the labels
associated to the arcs meeting at a crossing to be related by the quandle
operator.

Hence, the notion of a quandle colouring can be described as a quandle
homomorphism in the following way:

Definition 5.1. Let X be a fixed quandle, K a given oriented knot diagram
and R the set of arcs of K. A vector perpendicular to an arc in the diagram
is called a normal, and is chosen such that the ordered pair (tangent, normal)
agrees with the orientation of the plane. A quandle colouring C is then a
homomorphism C : R → X such that at every crossing, the relation depicted
in figure 11 holds, where c = a . b.

Since it is a homomorphism, the map will preserve the relations between
the arcs, and equivalently we have that C(γ) = C(α) . C(β). In this specific
case, α is called the source arc and γ is called the target arc. The definition
has a precise analogue for diagrams of knotted surfaces. This will be beyond
the scope of this article, but is exploited further in e.g. [6].

Figure 11: Quandle colouring at a classical crossing.
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More concretely, consider the Alexander quandle Λ3,2 from example 4.6.
Asserting the set of arcs to be R = {a1, a2, ...an} where n depends on the
specific knot diagram, it will be of interest to label each arc with an element
xi of Λ3,2 = {0, 1, 2}. Suppose there is a crossing that leads to the rela-
tionship ai . aj = ak, then it is required that the associated labels satisfy
xi . xj = xk. But, working in the Alexander quandle Λ3,2, we know the
quandle operation to be xi . xj = 2xi + 2xj = xk, which in turn gives us
xi + xj + xk = 0. This is exactly the same condition that was imposed
for each crossing for Fox’s three-colouring when treating the problem with
linear algebra. Therefore there is a bijection between three-colourings of the
knot K and Λ3,2-colourings.

More generally we can consider the Λn,t-colourings of a knot diagram,
i.e. assign to each arc an element xi ∈ Λn,t and require

xi . xj = txi + (1− t)xj = xk. (5)

In other words, we obtain a system of linear equations, one for each crossing:

txi + (1− t)xj − xk = 0. (6)

Since linear systems like these are relatively easily solved, there is no problem
to compute the number of Λn,t-colourings of a knot diagram. So, even
though Fox’s three-colouring is a rather crude knot invariant, the generalized
concept exploited here can be of actual help when we want to distinguish
two knots.

6 Fundamental quandle of a knot

Every oriented knot K has a naturally associated quandle called the funda-
mental quandle Q(K). Intuitively, the underlying set of Q(K) corresponds
to the set of arcs in the knot diagram and the quandle operator . records
the relationship between arcs that meet at a crossing.

However, there is one problem with this intuitive approach. If two arcs
x and y does not meet at a crossing, then x . y will not be defined. In this
case, one augments the underlying set with this element x . y and continues
to do so until every possible element is included. Because of this, most of the
elements in the fundamental quandle are not real arcs in the knot diagram.

Since the three defining conditions of a quandle actually are motivated
by the Reidemeister moves, it follows that the fundamental quandle Q(K)
remains unchanged when the knot diagram is changed by a Reidemeister
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move. Hence the fundamental quandle is a knot invariant, namely it will only
depend on the underlying oriented knot K. Also, the fundamental quandle
has a geometric interpretation in terms of homotopy classes of certain paths
in the knot’s complement [6].

The fundamental quandle is in fact an excellent knot invariant. Joyce
proved in his 1979 thesis that, up to orientation of the knot, if Q(K) and
Q(K ′) are isomorphic quandles, then K and K ′ are equivalent knots [7]. In
other words, the fundamental quandle can be regarded as the best possible
invariant, because two different knots can never have the same fundamental
quandle. However, the obvious problem is that it is very difficult to deter-
mine whether the fundamental quandles of two knots are isomorphic. In
fact, so far in my reading I have only seen one example in which the fun-
damental quandles has been used to relate two heretofore unrelated knots.
This connection was between the fundamental quandle of the trefoil and
the Dehn quandle of simple closed curves on a torus in which the quandle
operation is induced by Dehn twists [8].

To represent knot quandles, one can proceed analogously as in group
theory. Firstly, the set of generators will correspond to the arcs in the
knot diagram, while the relations are the ones obtained at each crossing.
As an example, following the names of the arcs illustrated in figure 12 the
fundamental quandle of the trefoil knot is given by:

Q(trefoil) = {a, b, c | a . b = c, b . c = a, c . a = b}. (7)

Figure 12: Oriented trefoil knot with labels assigned to the arcs.

7 HOMFLY-polynomials

Another important way to distinguish knots is by relating polynomials to
them. The Alexander polynomials discovered in 1923 was the first step, but
it was not until 1969 John Conway showed how a version of this polynomial
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can be computed by using a skein relation. The significance of this was not
realized until the discovery of the Jones polynomial in 1984. The HOMFLY
polynomial is a generalization of the Alexander and Jones polynomial, both
of which can be obtained by proper substitutions from HOMFLY [11]. The
HOMFLY is a 2-variable knot polynomial, and is also a quantum invariant.
The name HOMFLY combines the initials of its co-discoverers: Jim Hoste,
Adrian Ocneanu, Kenneth Millett, Peter J. Freyd, W. B. R. Lickorish, and
David N. Yetter. Sometimes it is written HOMFLY-PT to regonize the
independent work carried out by Józef H. Przytycki and Pawe l Traczyk [11].

Now, the definition of HOMFLY polynomial is given as follows:

Definition 7.1. The HOMFLY-polynomial of an oriented knot K, denoted
P (K), is a polynomial in two variables v and z defined by the following
rules:

• The skein relation shown below holds, and relates the HOMFLY-
polynomials of diagrams that are different only in small neighbour-
hoods.

• P(0) = 1, where (0) denotes the diagram of the unknot with no cross-
ings.

• P (K1tK1) = (v−1−v)z−1P (K1)P (K2), where (K1tK2) denotes the
disjoint union of diagrams K1 and K2.

Using these relations it is now possible to compute the polynomial of an
oriented knot. Generally, you have to pick a crossing and relate to one of
the crossings in the skein relation, then rearrange the equation and compute
the two leftover knots. After a finite number of steps one obtains a finite
number of trivial knots of which we know the polynomial. This procedure
can be illustrated using a resolving tree as shown in figure 13 below:

12



Figure 13: A resolving tree for the trefoil knot

The trefoil knot is the simplest non-trivial knot, and from this the cor-
responding HOMFLY-polynomial becomes

P (trefoil) = 2v−2 − v−4 + z2v−2. (8)

The explicit calculation showing all the steps can be found in [9].

8 Summary

This article has given a brief introduction to knot theory and its connections
to the structure of a quandle. The original motivation for the founders
of knot theory was to create a table of knots and links, which are knots
of several components entangled with each other. Since the beginnings of
knot theory in the 19th century, over six billion knots and links have been
tabulated.

To succeed in such a complicated job, it becomes necessary to improve
the mathematical tools connected to the problem. In this, the algebraic
structure of a quandle has become important. However, one does not have
to stop here. To gain further insight, mathematicians have generalized the
knot concept in several different ways. Knots can be considered in higher
dimensions as n-dimensional spheres in m-dimensional Euclidean space, or
one can use other objects that circles. Hence, this is a area with many
possibilities and can be useful in various applications in the future as well.

The starting point was with the notion of a knot diagram and applying
the three Reidemeister moves to investigate whether or not two diagrams
represent the same knot. However, this is not a systematic approach that is
applicable when the knot diagrams becomes complex. Hence, the road took
us to Fox’s three-colouring, and the corresponding re-framing of the problem
using linear algebra. However crude and simple this knot invariant seems,
it is at least computable in a rather simple way, especially when seen as a
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quandle colouring instead. We also have the most powerful, but too complex,
knot invariant given by the fundamental quandle which is distinct for every
knot that exists (up to orientation). The last knot invariant considered
was the HOMFLY-polynomials, which in many ways concludes the quest
of distinguishing knots from each other. Many others have searched for an
even more powerful knot-polynomial, but at least so far they have done so
in vain.
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