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1 Introduction

Crystals are solids that possess long range order. In order to understand and describe the
properties of solids, one needs to know more about what this long range order is. To do
this one studies the crystal structure. A crystal structure can be described as a repeating
pattern that can be extended indefinitely in space. One usually talks about the unit cell,
the smallest unit that when repeated makes up the pattern without leaving any holes.
The theory behind the crystal structures is not limited to the study of solids, it describes
all repeated patterns that can be obtained in this way, in any dimension.

An interesting question is how many of these structures there are. In this report a
way to classify and count n-dimensional crystal structures will be examined. Section 2
and section 3 will give a mathematical definition of a crystal structure along with some
basic properties of isometries, i.e. distance preserving maps, which are essential in the
description of crystal structures. In section 4 the concept of space groups will be intro-
duced and it will be shown that instead of classifying and counting crystal structures,
one can classify and count space groups. A way to determine equivalence between space
groups will be given. In section 5, the concept of crystal classes will be defined. Section
6 gives a brief introduction to cohomology of groups and shows a way to prove the Main
Theorem of Mathematical Crystallography, a theorem that is used to count the number
of possible n-dimensional crystal structures. Finally, section 7 shows how this theorem
can be used in the 2-dimensional case.

2 Crystals structures and the Euclidean space

Let Rn denote the n-dimensional real space. A point in Rn is specified by n real ordered
numbers, (x1, x2, ..., xn). Points are added component-wise and can be multiplied by a
scalar. Naturally, to describe crystal structures, one has to be able to talk about lengths
and angles and thus the inner product on Rn is needed.[1]

Definition 2.1. Let x = (x1, x2, ..., xn) and y = (y1, y2, ..., yn) be vectors in Rn. The
inner product of x and y is the sum

〈x, y〉 =
n∑
i=1

xiyi

Definition 2.2. The length of a vector, x, is defined as

‖x‖ =
√
〈x, x〉

Definition 2.3. The angle, θ, between two vectors, x and y, is defined as

cos θ =
〈x, y〉
‖x‖ ‖y‖

Definition 2.4. The distance between two vectors, x and y, is defined as ‖x− y‖.

The real space, Rn, together with the inner product described above defines an n-
dimensional Euclidean space and is denoted by En.
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Definition 2.5. [1, 2] An isometry, or rigid motion, of the Euclidean space is a map
f : En → En that preserves distances. That is, ‖f(x)− f(y)‖ = ‖x− y‖ for all x, y ∈ En.

Remark. It is clear that all translations are isometries [4].

Having defined these concepts, it is possible to give a precise mathematical definition
of a crystal structure.

Definition 2.6. [1, 2] Let C ⊂ En and let R be the set of isometries that preserve C.
Then C is a n-dimensional crystal structure if:

• R contains n linearly independent translations.

• There exists a D > 0 such that any translation in R has a magnitude greater than
D.

The n linearly independent translations with a smallest magnitude in a crystal struc-
ture correspond to the repetition of the unit cell described in section 1.

3 Isometries on the Euclidean space

The set of all isometries will be denoted by Isom(En).

As mentioned in section 2 all translations are isometries. Further, this is also true for all
orthogonal transformations. The orthogonal transformations form a group, O(n), under
composition of maps. Let tv denote a translation by v and let V = {tv : v ∈ En} denote
the set of all translations on En. V forms a group under composition of maps given by
tv ◦ tw = tv+w. It turns out that these kinds of isometries are sufficient to describe all
rigid motions as can be seen by the following theorem:

Theorem 3.1. [4] An isometry of En can be written uniquely as tv ◦ φ, where tv is a
translation by a vector v and φ ∈ O(n)

Proof. Let f : En → En be an isometry. If f = tv ◦ φ, then for all vectors x ∈ En one
has that f(x) = tv(φ(x)) = φ(x) + v. Setting x = 0 one has that f(0) = φ(0) + v = v.
Thus v is determined by f . Substituting f(0) for v one gets that φ(x) = f(x) − f(0),
which means that also φ is determined by f . To see that also the converse is true, define
g1(x) = x+ f(0) and g2(x) = f(x)− f(0). Then g1 is a translation and g2 an orthogonal
transformation. The last equality gives f(x) = g2(x) + f(0) = g1 ◦ g2(x) = tv ◦ φ(x) for
v = f(0). Thus f is uniquely determined.[4] �

It turns out that it is desirable to rewrite this in terms of abstract algebra. To simplify
notation, let (v, φ) denote the element tv ◦ φ in Isom(En).

Theorem 3.2. [1] Isom(En) forms a group under composition of maps.

Proof. : Let (v, φ), (v1, φ1), (v2, φ2) ∈ Isom(En). Consider the product of two elements,
(v1, φ1) and (v2, φ2), of Isom(En) acting on some vector x ∈ En.

(v1, φ1)(v2, φ2)(x) = (v1, φ1)(v2 + φ2(x)) = v1 + φ1(v2 + φ2(x)) =

= v1 + φ1(v2) + φ1φ2(x) = (v1 + φ1(v2), φ1φ2)(x)
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It is clear that (v1, φ1)(v2, φ2) = (v1 +φ1(v2), φ1φ2) is again an element of Isom(En), thus
Isom(En) is closed under composition of maps.

One also sees that (0, 1)(v, φ) = (0 + 1(v), 1φ) = (v, φ) = (v + φ(0), φ1) = (v, φ)(0, 1),
and thus (0, 1) is the unit element of Isom(En).

As mentioned, V forms a group under composition of maps and it is clear that t−1v = t−v.
Also, since O(n) is a group, every φ has an inverse, φ−1. From the formula for multi-
plication of two elements, it is easy to see that an inverse of (v, φ) must be (v, φ)−1 =
(−φ−1(v), φ−1)

Since composition of maps is associative, Isom(En) forms a group under composition
of maps. �

This group is called the Euclidean group or the group of isometries. A closer ex-
amination of the product of two isometries given in theorem 3.2 immediately brings the
thought to the semi-direct product of two groups:

Definition 3.1. Let H and G be two groups, and define an action of H on G by ρ : H →
Aut(G). The semi-direct product, H oρ G is defined as the set H × G together with a
product:

(h1, g1)(h2, g2) = (h1ρ(g1)(h2), g1g2)

Thus Isom(En) can be written as [1]

Isom(En) = V oO(n)

There are several important subgroups of Isom(En), two of which will be described in the
following propositions.

Proposition 3.3. [1] V is a normal subgroup of Isom(En).

Proof. Let tv = (v, 1) ∈ V and let f = (w, φ) ∈ Isom(En). Now consider conjugation of
tv by f :

f−1 ◦ tv ◦ f = (w, φ)−1(v, 1)(w, φ) = (−φ−1(w), φ−1)(v, 1)(w, φ) =

= (−φ−1(w) + φ−1(v), φ−1)(w, φ) = (−φ−1(w) + φ−1(v) + φ−1(w), φ−1φ) =

= (φ−1(v), 1)

Since (φ−1(v), 1) ∈ V , V is a normal subgroup of Isom(En) �

Proposition 3.4. [2] The set of isometries R, that preserve a crystal structure, C ⊂ En,
is a subgroup of Isom(En).

Proof. It is clear that the identity transformation preserves C. Let r ∈ R and c ∈ C.
Every isometry has an inverse and if r(c) = c′ ∈ C it is clear that r−1(r(c)) = r−1(c′) =
c ∈ C. Thus, r−1 ∈ R. Further, if r1, r2 ∈ R, then r2(r1(c)) ∈ C and r2 ◦ r1 ∈ R. Thus
R < Isom(En) �
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That the group of translations is a normal subgroup, is a fact that turns out to be
essential in the description of crystal structures, and will be of use later in the report.

Proposition 3.4 means that instead of directly describing the crystal structure, one can
look at the associated group, R, and describe the properties of the group. As will be seen
in the next section, R is a so called space group and the classification of crystal structures
can be done by classifying the space groups.

4 Space groups

To understand the concept of space groups one needs some knowledge of topology, in
particular the following basic definitions are useful:

Definition 4.1. [6, 7] A topology on a set X is a collection of subsets, τ , including X
itself and the empty set, such that any union of sets in τ is in τ and any finite intersection
of sets in τ is in τ .

Remark. The sets in τ are called open.

Definition 4.2. [6, 7] A topological space is a set X together with a topology, τ .

Definition 4.3. [6] Let Y be a subset ofX. If, for any collection of open sets {Uα : α ∈ A}
such that X is contained in the union of the Uα, there is a finite subset {α1, ..., αm} of A
so that Y is contained in the union Uα1 ∪ ... ∪ Uα1 , Y is called compact.

Remark. In particular, in Rn, a compact subspace is a subspace that is closed and
bounded.

Definition 4.4. [1] Let G be a group, let X be a subset of Rn and define an action of G
on X. A fundamental domain of the action of G on X is an open subset D that satisfies
the following two properties:

1.
⋃
g∈G

g.D = X

2. D ∩ g.D = ∅ for g 6= 1

Proposition 4.1. [1] The action of G on X is an equivalence relation ∼, by x ∼ y if
there exists a g ∈ G such that x = g.y

Proof. Since the identity element is in G, x ∼ x. Every element in G has an inverse,
therefore, if x = g.y, then y = g−1.x and x ∼ y ⇒ y ∼ x. Finally, if x ∼ y ⇔ x = g1.y
and y ∼ z ⇔ y = g2.z,then x = g1g2.z ⇔ x ∼ z. Thus ∼ is an equivalence relation. �

This is a useful fact due to the following defintions.

Definition 4.5. [7] Let X be a topological space and let ∼ be an equivalence relation
on X. The quotient space Y = X/ ∼ is defined as Y = {[x] |x ∈ X} , where [x] is the
equivalence class that contains x.
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What one does when dividing a topological space into quotient spaces is basically to
identify subsets and say that their elements are one and the same. A slightly different
way to think of quotient spaces, is therefore to think of them as gluing subsets together
[7]. For example, consider a straight line with end points p1 and p2 and an equivalence
relation x ∼ y ⇔ x = y or x = p1, y = p2. This can be thought of as saying that p1 and
p2 are the same point and thus as gluing the end points of the circle together. Therefore
the quotient space of the straight line in this case is topologically a circle.

Definition 4.6. [1] A discrete subgroup G of Isom(En) is a space group if the quotient
space En/G is compact.

Using the argument above about gluing, it is not difficult to see that compactness of
the quotient space is equivalent to compactness of the closure of the fundamental domain
of the action of G on En. This means that instead of determining the quotient space, one
can calculate the orbits of the action of G on En, something that might be simpler.

It is not immediately obvious how the definition of a space group relates to the def-
inition of crystal structures, but the following two theorems show the connection and
allows to identify every space group, G, with a crystal structure preserving group, R.

Theorem 4.2. [1] Bieberbach’s first theorem
A discrete subgroup G of Isom(En) is a space group if and only if G contains n linearly
independent translations.

Theorem 4.3. A group G is a space group if and only if it preserves a crystal structure
C ⊂ En

The proof is an altered version of the proof given in [2].

Proof. Definition 2.6 says that every group R that preserves a crystal structure is discrete
and contains n linearly independent translations. Thus, by definition 4.6 and theorem
4.2 every such group R is a space group.

To see that the converse is true, one must show that given a space group G, it is possible
to construct a crystal structure that is preserved under the action of G. First of all, con-
sider the action of G on En. By definition of the space group, the fundamental domain,
D, of this action is bounded. Choose an asymmetric subset P ⊂ D (i.e. choose P such
that the only isometry that preserves P is the identity transformation). This means that
P ∩ g.P = ∅ for all g ∈ G. Let C be the orbit of P under the action of G. Let R be
the set of transformations that preserve C. Since the pattern of P is asymmetric, any
r ∈ R must send P into the same place as some g ∈ G. Thus R = G and since G is
discrete and contains n linearly independent translations, C is a crystal structure. Thus
the statement is true. �

Theorem 4.3 shows that instead of classifying and counting crystal structures one can
classify and count space groups. To be able to do this, one needs to know when two space
groups are considered equivalent. There are two generally accepted definitions of this,
that turn out to be equivalent.
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Definition 4.7. [1] Two space groups are equivalent if they are isomorphic as groups.

This definition is certainly nice from a group theoretic point of view, but it is not
immediately obvious that it is equally nice from a crystallographic point of view. However,
it turns out that the above mentioned equivalent definition solves this problem, but to
see this one first needs to define what an affine transformation is.

Definition 4.8. [3] An affine transformation is a transformation that preserves colliner-
atity (i.e. points lying on a straight line will still lie on a straight line after the transfor-
mation) and ratios of distances.

Remark. In contrast to isometries, affine transformations need not preserve distances.

Just as in the case of isometries, the affine transformations form a group under com-
position of maps.

Definition 4.9. The affine group on En, Aff(En), is the group of all invertible affine
transformations on En.

The affine group of the affine space, A, on a vector space V can be realized as the
semi-direct product of all translations on V and the general linear group on V . That is,
Aff(A) = V o GL(V ), with the action of GL(V ) on V being the natural one, i.e. linear
transformations [1].

Theorem 4.4. [1] Bieberbach’s second theorem
Any abstract isomorphism of space groups can be realized by conjugation by an affine
motion of En.

This means that two space groups are isomorphic if and only if they are conjugate
by an element of Aff(En). This shows that definition 4.7 is nice also when considering
the crystal structure, since conjugation in the affine group means that one does not
distinguish between crystal structures that differ in e.g. size [2].

5 Crystal classes

A more abstract version of theorem 4.2 is the following:

Theorem 5.1. [1] An abstract group G is isomorphic to an n-dimensional space group
if and only if G contains a finite index, normal, free abelian subgroup of rank n, that is
also maximal abelian.

No complete proof will be given here. However, a discrete group of translations must
be free abelian. Therefore, by theorem 4.2 and proposition 3.3 one sees that a space
group contains a free abelian normal subgroup of rank n.

The maximal abelian subgroup of rank n described in the theorem corresponds to the n
linearly independent translations in theorem 4.2. This subgroup is denoted by M . Since
M is free abelian one has that M ∼= Zn and therefore it is called the lattice [1].
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M is a normal subgroup of G, and therefore the quotient group H = G/M , called
the point group, can be constructed [1]. It turns out that H is isomorphic to a finite
subgroup of O(n). That this is true can be seen by rewriting the expression for H in the
following way [2].

H = G/M = G/G ∩ V ∼= V.G/V ↪→ Isom(En)/V = O(n)

Definition 5.1. [1] A sequence of groups, G1, G2, G3, with connecting homomorphisms
f1 : G1 → G2 and f2 : G2 → G3, usually written as

G1
f1→ G2

f2→ G3

is a short exact sequence if f1 is a monomorphism, f2 an epimorphism and im(f1) =
ker(f2).

Remark. A short exact sequence can also be written as an exact sequence with five

elements: 1 → G1
f1→ G2

f2→ G3 → 1. This appears to be more common, but in this
report the notation used in [1] has been chosen.

It is straightforward to check that G, H and M fit info a short exact sequence

M
i→ G

p→ H

By this there is an induced action ofH onM . Let h ∈ H andm ∈M , then h.m = h′mh′−1

with h′ ∈ G such that p(h′) = h.

The fact that M , G and H fit into a short exact sequence, gives a way to classify crystal
structures and divide them into so called crystal classes: The lattice M , together with the
point group H and the action of H on M determine a crystal class, denoted by (H,M) [1].

Since M is free abelian, it is possible to choose an integral basis for M . The action
of H on M is then an injective homomorphism, f : H → Aut(M) ∼= GL(n,Z). There-
fore, after choosing this basis for M , H is embedded as a subgroup f(H) of GL(n,Z) [1].

Again, to be able to classify crystal structures, one needs to know when they are consid-
ered equivalent. This is also the case for crystal classes. In fact there are two different
notions of equivalence, there are the arithmetic- and the geometric crystal classes.

Definition 5.2. [1] Let (H,M) and (H,M ′) be two crystal classes with actions f and f ′

respectively. If there exists an isomorphism α : M →M ′ such that

αf(h) = f ′(h)α

for all h ∈ H, then (H,M) and (H,M ′) are said to be arithmetically equivalent.

Rewriting the relation in the definition gives α ◦ f ◦ α−1 = f ′, which says that the
subgroups f(H) and f ′(H) are conjugate in GL(n,Z). If one allows the subgroups to be
conjugate in GL(n,Q), the crystal classes are instead called geometrically equivalent [1].

In the rest of this report only the arithmetic equivalence will be considered.
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6 Cohomology of groups

To further count and classify the crystal structures, the concept of cohomology of groups
is needed.

Definition 6.1. [8] Let ..., A−2, A−1, A0, A1, A2, ... be a sequence of abelian groups con-
nected by homomorphisms, dn : An → An+1, such that dn+1 ◦ dn = 0. The sequence
together with the homomorphisms form a cochain complex.

Definition 6.2. [6, 8] An element of the kernel of dn is called a n-cocycle and an element
of the image of dn−1 is called a n-coboundary. The group of n-cocycles is denoted by Zn

and the group of n-coboundaries is denoted by Bn.

Since all An are abelian, all their subgroups are normal. Further, since dn+1 ◦ dn = 0,
im(dn−1) must be a normal subgroup also of ker(dn). Thus the quotient group of these
can be formed.

Definition 6.3. [6, 8] Let Hn = Zn/Bn. This is called the nth cohomology group of the
cochain.

As will be seen later, in the case of crystal structures, one is interested in certain types
of maps between groups of maps. This motivates the following definitions:

Definition 6.4. [6, 8] Let Cn(G,M) be the group of all functions from Gn (the Cartesian
product of n copies of G) to M . The elements of this group are called n-cochains.

Definition 6.5. [8] A n-coboundary is a homomorphism dn : Cn(G,M)→ Cn+1(G,M)
that for any f ∈ Cn(G,M) satisfies

dnf(g1, g2, ..., gn) = g1f(g2, ..., gn+1) +
n∑
i=1

(−1)if(g1, ..., gi−1, gigi+1, gi+2, ..., gn+1)+

+ (−1)n+1f(g1, ..., gn)

In particular, for n = 0 and n = 1, one has that

• d0m(g) = gm−m (This is a special case. Since a 0-cochain has no arguments it is
a constant m ∈M .)

• d1f(g1, g2) = g1f(g2)− f(g1g2) + f(g2)

Proposition 6.1. [8] For all n-coboundaries, dn+1 ◦ dn = 0.

The proof of this proposition involves long calculations and is therefore left out.

This proposition shows that the groups Cn(G,M) form a cochain complex and thus it is
possible to define the coboundary-, cocycle- and cohomology groups. For the discussion
of crystal structures, only the 1-cocycles and 1-coboundaries are needed.

• A 1-cocycle is obtained by letting the expression for d1f(g1, g2) equal zero. There-
fore, the group of 1-cocycles, Z1(G,M), must consist of all functions, f : G → M
that satisfy f(g1g2) = f(g1) + g1.f(g2).
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• The group of all 1-coboundaries, B1(G,M), are simply all functions, fm : G→M ,
that satisfy fm(g) = d0m(g) = m− g.m.

Combining these, one gets the first cohomology group:[8]

H1(G,M) = Z1(G,M)/B1(G,M)

Before one can appreciate the necessity of cohomology of groups, a few more obser-
vations are needed. Returning to the description of the space group in terms of a short
exact sequence,

M
i→ G

p→ H

together with the induced action of H on M , it is natural to wonder if G is the semidirect
product of M and H. As the following result will tell, this is not always the case.

Proposition 6.2. [5] Let M
α→ G

β→ H be a short exact sequence. Then G is isomorphic
to a semidirect product of the two groups M and H, M oγ H if and only if there exists a
homomorphism φ : H → G such that β ◦ φ = idH . In this case γ : H → Aut(M) is given
by

α(γ(h)(m)) = φ(h)α(n)φ(h−1)

The proof of this is long and will be left out, it can however be found in [5], page 5.

Also, given M and H, they do not uniquely determine a G. This is because non-
isomorphic groups can have isomorphic normal subgroups with isomorphic quotient groups.
For example there are the groups

D4 =
〈
r,m|r4,m2, (rm)2

〉
and

Q8 =
〈
−1, i, j, k|(−1)2 = 1, i2 = j2 = k2 = ijk = −1

〉
Clearly D4 is not isomorphic to Q8. However, 〈r2〉/D4 and {±1}/Q8. One also has that
〈r2〉 ∼= {±1} ∼= Z2 and D4/ 〈r2〉 ∼= Q8/ {±1} ∼= Z2 × Z2 [5]

By proposition 3.4, G < Isom(En), which is the same thing as saying that G < V oO(n),
and thus every element of G can be written as (v, h) where v ∈ V and h ∈ O(n). As
mentioned earlier, H is isomorphic to a finite subgroup of O(n). Since this report is only
concerned with the number of unique space groups, and not with what the elements of
G are, one can choose G such that H is a subgroup of O(n) (since counting the number
of unique space groups is the same thing as determining the number of non-isomorphic
space groups). Therefore, since p is a map from G to H, one can let p be a projection
onto h ∈ O(n).

Let τ : H → G be a map such that p(τ(h)) = h for all h ∈ H. Since p is a projec-
tion onto O(n), τ(h) = (σ(h), h) for some map σ : H → V . The map σ is called the
section of the exact sequence [1].

The choise of σ is not unique, since every h allows for σ(h) to one be of many elements of
V . However, by composing σ with the natural projection, π : V → V/M , such that v ∈ V
is mapped to the coset of M containing v, one gets a new map s = π ◦ σ : H → V/M [1].
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Proposition 6.3. [1] The map s : H → V/M is well defined.

Proof. Let σ and σ′ be two sections of the exact map and let π : V → V/M be the natural
projection. Let s = π ◦ σ and s′ = π ◦ σ′. Assume that s(h) 6= s′(h). Then consider the
following product: (σ(h), h)(σ′(h), h)−1 = (σ(h), h)(−h−1σ′(h), h−1) = (σ(h) − σ′(h), 1).
For this to make sense, σ(h) − σ′(h) must be in M . Composing this with the natural
projection, one has that π(σ(h)− σ′(h)) = 0 and since π is a homomorphism, this gives
π(σ(h)) = π(σ′(h)). However, the assumption was that s(h) 6= s′(h), thus this is a
contradiction. Therefore s′(h) = s(h) and s is well defined. [1] �

The map s turns out to be important. By proposition 6.4, s is determined by G.
Further, also G is determined by s, as can be realized by observing that [1]

G = {(v, h) ∈ Isom(En) : h ∈ H, v = s(h)}

Therefore, instead of classifying space groups one can classify the maps s. To do this, a
closer study of s is required.

Proposition 6.4. [1] The map s satisfies the following two properties:

1. s(1) = 0

2. s(h1h2) = s(h1) + h1s(h2)

Proof. Consider the product (s(x), x)(s(y), y). M is invariant under the action of H,
therefore there is also an action of H on V/M and multiplication can be carried out
in the same way as earlier. One gets that (s(x), x)(s(y), y) = (s(x) + x.s(y), xy). For
this to make sense, one needs to identify s(xy) and s(x)+x.s(y) and thus 2. is proven [1].

1. follows from 2. in the following way: s(1) = s(1 · 1) = s(1) + 1.s(1) = s(1) + s(1) ⇔
s(1) = 0. �

A closer look at the expression for s(xy), shows that s must be a 1-cocycle and the
set of all such s : H → V/M therefore form the group Z1(H,V/M).

Bieberbach’s second theorem, theorem 4.4, says that two space groups are equivalent if
they are conjugate in the Affine group. Therefore, to classify the elements of Z1(H,V/M),
one needs to examine what happens to the 1-cocycles under this kind of conjugation and
determine which 1-cocycles give the same space group. As mentioned earlier, the affine
group on En is given by Aff(En) = V oGL(V ). Let (a, g) be an element of Aff(En). It is
clear that (a, g) = (0, g)(a, 1). Hence every element of Aff(En) can be written as a com-
position of a translation and an element of GL(V ) and it suffices to check the conjugacy
of a space group with each of these two elements seperately. [1]

Let a ∈ V and let s : H → V/M be a 1-cocycle. Then one has

(a, 1)(s(h), h)(a, 1)−1 = (a, 1)(s(h), h)(−a, 1) = (a+ s(h)− h(a), h)

One sees that conjugating by (a, 1) is the same as adding the expression Bα = α− h(α),
where α = a mod M , to s. Comparing this to the expression for a 1-coboundary men-
tioned above, one sees that the set of all Bα forms the group B1(H, V/M) [1].
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Thus all space groups corresponding to maps s plus an arbitrary 1-coboundary are isom-
porphic, and thus equivalent. To get rid of these isomorphisms, one can consider the
quotient group of Z1(H,V/M) and B1(H,V/M), but as defined above, this is exactly the
first cohomology group, H1(H,V/M) [1].

Now consider the effect of conjugation with an element of GL(V ). Let (0, g) ∈ GL(V ).
Then

(0, g)(s(h), h)(0, g)−1 = (0, g)(s(h), h)(0, g−1) = (g(s(h)), ghg−1)

To see where this leads, one needs to define an action of g on the set of 1-cocycles. A
convenient choice is:

(g.s)(h) = gs(g−1hg)

Then one has that

(0, g)(s(h), h)(0, g)−1 = (gs(g−1hg), ghg−1)

If g is in the normalizer, N(H,M) = {g ∈ Aut(M) : gH = Hg}, of H in Aut(M), then
the space groups are isomorphic, and the 1-cocycles should be identified. This also shows
that conjugating a space group by (0, g) changes the 1-cocycle to gs [1].

All of this leads to the main theorem of this report:

Theorem 6.5. [1] Main theorem of mathematical crystallography
There exists a one-to-one correspondence between space groups in the arithmetic crystal
class (H,M) and the orbits of N(H,M) acting on the 1-dimensional cohomology group
H1(H, V/M).

Remark. It can be shown that H1(H,V/M) ∼= H2(H,M), and actually, H2(H,M) seems
to be more common to use.

The main theorem of mathematical crystallography turns out to be useful for classify-
ing crystal structures and to find out how many different structures there are. In general,
to count all n-dimensional crystal structures, it can be advantageous to represent the
group elements as n× n-matrices. Then the following algorithm can be used:[2]

1. Determine all possible point groups, H.

2. For each H, determine all unique representations of the generators and calculate
N(H,M).

3. For each representation, determine H1(H, V/M)

4. Determine the orbits of N(H,M) on H1(H, V/M)

In the next section an example of how to use this algorithm will be shown.
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7 2-dimensional space groups

In this section the 2-dimensional space groups, also called wallpaper groups, will be
examined. The first thing that needs to be done, is to find all possible point groups. It
turns out, as will be seen by the following results, that the number of possibilities is quite
limited in the 2-dimensional case.

Proposition 7.1. [2] Let M ∼= Zn and let g be an automorphism of finite order of M .
Then g has order 1, 2, 3, 4 or 6.

Proof. g must be an orthogonal transformation of M and therefore g is either a rotation
or a reflection. If g is a reflection, it has order 2, therefore assume that g is a rotation
through an angle θ. Since M is discrete, there exists a non-zero vector m ∈M of minimal
length. The composition tmg

−1t−m then describes a rotation through an angle −θ around
the point m. Now let v = tmg

−1t−m(0) and consider the difference w = v − gu. w must
be a vector in the same direction as u. Since u is the shortest possible such vector and
since M ∼= Zn w must be an integer multiple of u. Therefore, the only possible values of
θ are 0, π

3
, π
2
, 2π

3
, π. Thus the rotations all have order 1, 2, 3, 4 or 6. Since all reflections

have order two, all g must be of order 1, 2, 3, 4 or 6. [2] �

Proposition 7.2. [2] Any finite group of real 2× 2 matrices is either cyclic or dihedral.

Propositions 7.1 and 7.2 show that the only possible 2-dimensional point groups are

e,Z2,Z3,Z4,Z6, D1, D2, D3, D4, D6

The above-mentioned algorithm requires a lot of calculations for each point group, and
therefore only a simple example concerning the trivial group will be shown here. (In [1]
there is a thorough examination of H = D4.)

Let H = e and choose the basis Ze1 × Ze2 for the lattice M , where e1 and e2 are
the ordinary unit vectors. H has one generator, e, and it has order 1. Represented as
2× 2-matrices, H is generated by

R =

[
1 0
0 1

]
Let s : H → V/M be a 1-cocycle. s transforms the elements of H and thus one needs to
find out what s(R) is. Since s(R) is an element in V/M , it is a vector, so let

s(R) =

[
a1
a2

]
However, R is the identity element, and by proposition 6.4 s(1) = 0, with 0 being the
coset that contains 0. Thus s(R) must always be the zero-vector, and the only 1-cocycle
that exists is the trivial one that maps everything to 0. Thus Z1(H,V/M) only contains
a single element and is isomorphic to the trivial group.

Since Z1(H, V/M) only contains one element, it must be equal to H1(H,V/M). The
action of the normalizer will then generate only one orbit, and thus there is exactly one
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space group corresponding to the trivial point group.

Of course, the trivial group is generally considered uninteresting, but the reasoning is
the same as in a non-trivial case. A non-trivial group can be presented on the form
H = 〈g1, ..., gm|r1 = ... = rn = 1〉, where the g:s are the generators and the r:s relations.
Representing H with matrices and letting Rk be the matrix corresponding to the relation
rk one has that s(Rk) must be an integer vector. This gives conditions on the elements
of the vectors s(Gk), where Gk is the matrix corresponding to the generator gk. To fur-
ther determine the possible values of s(Gk) one can add appropriate 1-coboundaries and
in that way see how many unique 1-cocycles there are. This is the number of possible
choices of the vectors s(Gk), and corresponds to the group H1(H, V/M). [1]

Doing this for all above mentioned two-dimensional point groups, gives the result shown
in table 1. One sees that in total there are 17 different two-dimensional space groups.

Point group Representation of generators H1(H,V/M)
Number of
space groups

Notation

e

(
1 0
0 1

)
1 1 p1

Z2

(
−1 0
0 −1

)
1 1 p2

Z3

(
0 −1
1 −1

)
1 1 p3

Z4

(
0 −1
1 0

)
1 1 p4

Z6

(
0 1
1 1

)
1 1 p6

D1

(
−1 0
0 1

)
Z2 2 pm, pg

D1

(
1 1
0 −1

)
1 1 cm

D2 ±
(
−1 0
0 1

)
Z2 × Z2 3 pmm, pmg, pgg

D2 ±
(
1 1
0 −1

)
1 1 c2mm

D3

(
−1 0
0 1

)
,

(
0 −1
1 −1

)
1 1 p3m1

D3

(
−1 0
1 1

)
,

(
−1 −1
1 0

)
1 1 p31m

D4

(
−1 0
0 1

)
,

(
0 −1
1 0

)
Z2 2 p4m, p4g

D6

(
−1 0
0 1

)
,

(
0 1
1 1

)
1 1 p6m

Table 1: Point groups with corresponding space groups in 2 dimensions. The fifth column
shows the standard crystallographic notation used for space groups. [1, 10, 9]
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Figure 1: Pieces of the patterns that can be used to illustrate the 17 wallpaper groups.
Image taken from [11]

Figure 1 shows patterns that correspond to these groups and is a nice way to illustrate
the differences between them.

p1 is the space group that has the trivial group as point group. This means that
the only maps that preserve the crystal structure are translations. Studying figure 1, one
clearly sees that this is the case; the pattern cannot be rotated, reflected or glide reflected
in any way without altering it. Similarly, in the case of p2, one sees in the picture that
the pattern can be rotated 180◦ without altering it. This corresponds to the point group
being Z2.

Figure 1 clearly shows the difference between space groups with different point groups.
Take for example the space groups p6 and p6m. It is obvious that both patterns are in-
variant under rotation trough an angle n60◦. However, one also sees that the p6m-pattern
is invariant under certain reflections, which is not true for the p6-pattern. Therefore p6m
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must correspond to the point group D6 and p6 to the point group Z6.

Instead of considering two different point groups, one can study the case where the same
point group gives rise to different space groups. Take for example p4g and p4m. They
both have D4 as point group. Looking at the patterns in figure 1, one sees that both
patterns have four lines of reflection meeting at one point. In the p4m-pattern, this point
is also a center of rotation around which the pattern can be rotated trough an angle n90◦.
Also the p4g-pattern can be rotated through this angle, but the center of rotation is not
located at the point where the lines of reflection meet. [1]

The 2-dimensional case is certainly nice when it comes to illustrating things, but in
e.g. solid state physics it is the 3-dimensional case that is the most important. In three
dimensions, according to mathematicians and the methods in this report, there are 219
space groups. According to crystallographers, however, there are 230. The difference
arises because crystallographers consider crystals that are mirror-images of each other as
being different. Mathematically, crystallographers use conjugation in the special affine
group (i.e. affine mappings with positive determinant) as a definition of equivalence of
space groups, in contrast to definition 4.7 and theorem 4.4 where conjugation in the affine
group is used as criterion for equivalence [1].

In higher dimensions, the number of space groups grows fast, and according to [1] it
has been shown that the number grows at least as fast as 2n

2
.
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