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1. Finite subgroups of the Orthogonal group O(3) 
The group of all 3 × 3 orthogonal matrices, in other words all 
orthogonal transformations in Euclidian 3-D space.  

1.1 Intro 
The group O(3) contains all rotations in 3 dimensions, there are some 
basic ones, e.g. rotation about an axis (1.1), reflection in a plane (1.2)
or a reflection in the origin (1.3). 
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(1.3) can also be seen as e.g. first a rotation of π  about the z axis and 
then a reflection in the xz-plane.  
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Now there exists some non-trivial finite subgroups to, we find that 
there are three types of subgroups, rotation groups (chap. 2), Non-
rotating groups with –I and non-rotating groups not containing –I. 
Let’s start from the top. 
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2. Special Orthogonal group or Rotation group SO(3) 

2.1 Intro 
The set of all rotations about the origin of 3-dimensional Euclidean 
space, . The special orthogonal group is defined to be 3

{ }(3) (3, ) | , det 1tSO A GL A A I A= ∈ = = , a matrix A  represents a rotation 

about the origin iff , hence  is called the rotation group. (3)A SO∈ (3)SO
Every eα ≠ , (3)SOα ∈ , is a rotation about some axis, this needs some 

vector  in  s.t. . Then a will carry the plane perpendicular to 
 into itself and since 

v 3 v vα =
v det 1a =  we see that α  is a rotation in this plane. 
i.e. α  is a rotation about the axis through v , to prove the existence of 
such a  we must prove the v Iα −  has a non-trivial kernel, i.e. that  
 
 det( ) 0Iα − =  (1.4) 
 

1t tIαα α −= ⇒ =α ), thus giving us 1( ) ( tI I Iα α α α α−− = − = −  which then 
gives us det( ) det( ) det( )t tI I Iα α α− = − = − , since det( ) 1α =  (by hypothesis). 
det( ) det( ) det( ) det( )I I I Iα α α− = − = − − , since 
det( ) 1 det( ) det( )I I Iα α− = − ⇒ − = − −  or det( ) 0Iα − = . In n dimensions we 
have de  so the above proof is only valid if  is odd.  t( ) ( 1)nI = − n
Any α  in with odd leaves invariant at least one non-zero 
vector. , and 

( )SO n n
(3)G SO⊆ \{ }G eα ∈ leaves precisely one line of vectors 

point wise fixed, and hence has precisely two fixed points on the unit 
sphere, M. Thus the formula  
 
 ( )Y FP

α
α=∑  (1.5) 

 
simplifies to 
  
 2( 1)mY G= −  (1.6) 

 
1−  comes from the fact that e is excluded. Now let 
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If we divide (1.8) with n  we get 
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This eqn. impose severe restrictions on  and . ,  r n in
 
Since P consists of points which are held fixed by at least one element 
of G apart from the identity, we can be sure that { }mG e≠ for 

hence m P∈ 2mG ≥ thus all the , and the right-hand side of the 

above eqn. is not less than 

2in ≥

2
rr − . It follows that 2

2
r r 4< ⇒ < , so there 

are at most 3 orbits. But 1r =  is also excluded since in n<  thus 

 

 
22 1

in n
1
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Is impossible, which gives 2,3r = , let’s look at them separately. 

2.2 r=2 

(1.9) becomes 
1 2

2 1 1
n n n
= +  

Since this is only possible ifin n≤ 1 2n n n= = , which implies that  

for each pole. Thus all rotations are about a fixed axis. The group G 

thus consists of all rotations through angels 

mG G=

2
n
π

about a fixed axis. 

 nG C=

2.3 r=3 

(1.9) becomes 
1 2

2 1 1 11
n n n n

+ = + +
3

3

 

We can, without any loss of generality, suppose that 1 2n n n≤ ≤ . This 

gives us some separate cases. 
 

1. , then  hence 1 2 2n n= = 32n = n ∃  two poles, p and p’, in O(3). 
, g either fixes both or interchanges them. So G is g G∀ ∈
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rotations about a line ( , ')l p p=  or rotations by π  about a line 
. G will be the group of regular 'l ⊥ l 3n − gon, that is, the dihedral 

group . 
3nD

 
1 2n =  and , then there are some options for . 22 n n< ≤ 3 2 3(2, , )n n

 
2. ,  For , let (2,3,3) 12n = (3)p O∈ (2)q O∈ be a pole nearest to p. Then 

operates on and3pG G= (2)O 3 3n = , so pG q⋅ is a set of three closest 

neighbors of p. i.e. the set obtained by the rotation about p. ∃4 
equilateral triangles which form a regular tetrahedron. Thus 

 G T=
 

3. , , For , let (2,3, 4) 24n = (3)p O∈ (2)q O∈  be a pole nearest to p. 
Then operates on and3pG G= (2)O 3 4n = , so pG q⋅  is a set of four 

closest neighbors of p. i.e. the set obtained by the rotations 
about p.  squares which form a cube. Thus 6∃ G O= . 

 
4. , , For , let (2,3,5) 60n = (3)p O∈ (2)q O∈ be a pole nearest to p. Then 

 operates on  and3pG G= (2)O 3 5n = , so pG q⋅ is a set of five closest 

neighbors to p. i.e. the set obtained by the rotations about p. 
These poles are equally spaced, and so form a regular pentagon 
in .  Pentagons, forming a reg. dodecahedron. Thus G = I. 3 12∃

 
Hence every finite subgroup is one of the following. (3)G SO⊆
 

I.  The cyclic group, of rotations by multiples of :kC 2 kπ  about a 

line 
II. The dihedral group, of symmetries of a regular k-gon. :kD

III.  The tetrahedral group, of twelve rotations carrying a 
regular tetrahedron to itself. 

:T

IV.  The octahedral group, of order 24 of rotations of a cube or 
regular octahedron. 

:O

V.  The icosahedra group, of order 60 of rotations of a regular 
dodecahedron or regular icosahedrons. 

:I

 
One can now exclude all angels of rotation other than 2 / kπ  with 

, this due to the preservation of a polyhedron after rotation, 
hence after this restriction we have narrowed our list of subgroups 
down to 11 (see table 1). 

1, 2,3, 4,6k =
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Tetrahedron                  Octahedron             Dodecahedron        Icosahedron 
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3 Non-rotation groups containing –I 
From the 11 rotation groups we can get 11 non-rotating groups by 
including –I, and let G  be all subgroups with  where  and G+ a det 1a = −  
are the sets of elements where det 1a = − . 

3.1 The cyclic group, Ck

3.1.1 C1 

Contains only the identity so by including –I we get a two element 
group called Ci, which is isomorphic to C2, but Ci and C2 are not 
conjugate subgroups of O(3). 

3.1.2 C2 

Consists of the identity, I, and a 18  rotation 0 Rπ . The identity 

constitutes a normal subgroup of index 2, which we use as . The 

 rotation is 

G+

180 ( )I G−− , if we multiply the 18  rotation with –I we get 0
 

 

1 0 0
0 1 0
0 0 1

Rπ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (1.11) 

 
Which is a reflection in the xy-plane. The resulting group { },sC I Rπ= . 

sC  and  are (of course) isomorphic but they are different subgroups 

of O(3).  
2C
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3.1.3 C3

As it contains an odd number of elements and can hence not contain 
any normal subgroups with index 2. There is possible though to obtain 
a six-element non-rotating group, by multiplying each element with 
the inverse -I. the three new elements are rotations through 18 , 

 and all followed by a reflection in the xy-
plane. This is the  group which is isomorphic to , but the odd 

rotations through 60 , 18  and  are multiplied by a reflection in the 
xy-plane.  

0
120 180 300+ = 120 180 60− + =

6S 6C
0 300

 
Figure 1: s6 symmetry 

3.1.4 C4

With –I, we obtain the group  whose elements are the rotations 0 , 

, 18  and , and the same rotations with a reflection in the xy-
plane. 

4hC
90 0 270

 
Figure 2: C4h symmetry 
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3.1.5 C6

Together with –I gives the 12-element group .  6hC

3.2 The dihedral group, Dk

Q: What's hot, chunky, and acts on a polygon? 1

 

3.2.1 D2

Consists of the identity and rotations about the axis’s, when multiplied 
with –I, we get (in addition to -I) reflections in the coordinate planes, 
this the resulting eight-element group is called .  2hD

 
Figure 3: D2h symmetry 

 

                                    
1 A: Dihedral soup. 
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3.2.2 D3

If we multiply the rotation elements ,12  and by –I, and get 
rotations through 60 ,18  and 300 , and a reflection in the horizontal 
plane. This results in the  group, where d refers to diagonal 

reflection planes, which bisects the angels between the rotation axes. 

0 0 240
0

3dD

 
Figure 4: D3d symmetry 

3.2.4 D4 and D6

By multiplication of –I to the groups we get D4h with 16 elements and 
D6h With 24 elements, respectively. These are the complete symmetry 
groups to the square and the hexagon, respectively.  

3.3 The tetrahedral group, T 
By multiplying each element of the group T by the inverse, -I, we add 
12 more elements to complete the group Th. This can be visualized as 
the symmetry group of a cube with “right hand” objects to the 
tetrahedron of four vertices and “left hand” objects to the other four 
vertices. Those elements with the determinant of +1 preserves the two 
tetrahedrons and those with determinant of -1 interchanges them.  

 
Figure 5: Th symmetry 
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3.4 The octahedral group, O 
By multiplication of each element in O by –I, we get Oh. This is the 
group of all symmetries of a cube and contains 48 elements.  
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4 Non-rotation groups not containing –I 

4.1 The cyclic group, Ck

4.1.1 C2 

We can also get a four element group by including –I, this is the group 

{ }2 , , ,hC I I R Rππ= −  it’s called  because it contains both a two-fold 

rotation axis and a horizontal reflection plane perpendicular to that 
axis.  is Abelian, but is not isomorphic to the cyclic group . 

2hC

2hC 4C

4.1.2 C4 

Since we have a normal subgroup with index 2 consisting of the 
identity, I, and a 18  rotation, 0 R . We can get a four-element group by 
multiplying the  and  by –I, which gives us  whom are 
isomorphic to  but  and  are reflected in the xy-plane. 

90 270 4S
4C 90 270

 
Figure 6: S4 symmetry 
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4.1.3 C6 

Since  is a normal subgroup of  with index 2, we can construct a 

six-element non-rotating group from  by multiplying the 60 , 18  

and 300  rotations (which are the ones not in ), by –I, gives us 240 , 

 and 12 , respectively, (all multiplied by a reflection in the plane). 
This is the  group containing rotations  ,12  and 240 , each with 

or without reflection in the plane. 

3C 6C

6C 0

3C
0 0

3hC 0 0

 
Figure 7: C3h symmetry 

4.2 The dihedral group, Dk

4.2.1 D2 

2D  consists of three equivalent normal subgroups of index 2, so we 

choose the one with I and the 18  rotation about the vertical z-axis as 
. Multiplying the 18  rotation about the x- and y-axis by –I, we 

obtain a reflection in xz- and yz-planes, this resulting group is called 
, where v indicates the presence of vertical reflection planes. 

0
G+ 0

2vC

 
Figure 8: C2v symmetry 
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4.2.2 D3 

Since D3 contains C3 as a normal subgroup with index 2, we can obtain 
C3v, by multiplying the three 18  rotations with –I, this gives us three 
reflections in the plane. 

0

 
Figure 9: C3v symmetry 

 

4.2.4 D4 and D6 

If we multiply all the 18  rotations with –I, we get D0 4v and D6v, 
respectively. Which include reflection in the vertical planes. Starting 
with D3, as a normal subgroup to D6 with index 2, we might obtain the 
12-element group D3h, which is the complete symmetry group of the 
equilateral triangle.  

 
Figure 10: C4v symmetry 

 

 
Figure 11: D2d symmetry 
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Figure 12: C6v symmetry 

4.4 The octahedral group, O 
By choosing T as a normal subgroup of O, and multiplying each of the 
12 elements in O which is not in T by –I, we obtain Td. Td is the group 
of all symmetries, including reflections, of the tetrahedron. Td is 
isomorphic to the permutation group S4. 
 

 
Figure 13: Td symmetry 
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Rotation groups Non-rotation groups 
containing -I 

Non-rotation groups 
not containing -I 

S H-M S H-M S H-M 

C1 1 Ci 1     
C2 2 C2h 2/m C5 m 

C3 3 S6 3      
C4 4 C4h 4/m S4 4  
C6 6 C6h 6/m C3h 3/m 
D2 222 D2h mmm C2v mm2 

D3 32 D3d 3 m C3v 3m 
D4 422 D4h 4/mmm C4v 4mm 
        D2d 4 2m 

D6 62 D6h 6/mmm C6v 6mm 

        D3h 6 2m 
T 23 Th m3     
O 432 Oh m3m Td 4 3m 

Table 1: Complete table of  
(interesting) subgroups of O3 and SO3
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