Symmetrier, Grupper \& Algebror

The finite subgroups of $\mathrm{SO}(3)$ and $\mathrm{O}(3)$

1. Finite subgroups of the Orthogonal group $\mathrm{O}(3)$

The group of all 3×3 orthogonal matrices, in other words all orthogonal transformations in Euclidian 3-D space.
1.1 Intro

The group O (3) contains all rotations in 3 dimensions, there are some basic ones, e.g. rotation about an axis (1.1), reflection in a plane (1.2) or a reflection in the origin (1.3).

$$
\begin{align*}
& R_{x}(\theta)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right] \\
& R_{y}(\theta)=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \tag{1.1}\\
& R_{z}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
& R_{y z}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
& R_{x z}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \tag{1.2}\\
& R_{x y}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \\
&-I=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right] \tag{1.3}
\end{align*}
$$

(1.3) can also be seen as e.g. first a rotation of π about the z axis and then a reflection in the xz-plane.

Now there exists some non-trivial finite subgroups to, we find that there are three types of subgroups, rotation groups (chap. 2), Nonrotating groups with -I and non-rotating groups not containing -I. Let's start from the top.

2. Special Orthogonal group or Rotation group SO(3)

2.1 Intro

The set of all rotations about the origin of 3-dimensional Euclidean space, \mathbb{R}^{3}. The special orthogonal group is defined to be $S O(3)=\left\{A \in G L(3, \mathbb{R}) \mid A^{t} A=I, \operatorname{det} A=1\right\}$, a matrix A represents a rotation about the origin iff $A \in S O(3)$, hence $S O(3)$ is called the rotation group. Every $\alpha \neq e, \alpha \in S O(3)$, is a rotation about some axis, this needs some vector \vec{v} in \mathbb{R}^{3} s.t. $\alpha \vec{v}=\vec{v}$. Then a will carry the plane perpendicular to \vec{v} into itself and since $\operatorname{det} a=1$ we see that α is a rotation in this plane. i.e. α is a rotation about the axis through \vec{v}, to prove the existence of such a \vec{v} we must prove the $\alpha-I$ has a non-trivial kernel, i.e. that

$$
\begin{equation*}
\operatorname{det}(\alpha-I)=0 \tag{1.4}
\end{equation*}
$$

$\alpha \alpha^{t}=I \Rightarrow \alpha^{t}=\alpha^{-1}$, thus giving us $\alpha-I=\alpha\left(I-\alpha^{-1}\right)=\alpha\left(I-\alpha^{t}\right)$ which then gives us $\operatorname{det}\left(I-\alpha^{t}\right)=\operatorname{det}(I-\alpha)^{t}=\operatorname{det}(I-\alpha)$, since $\operatorname{det}(\alpha)=1$ (by hypothesis). $\operatorname{det}(\alpha-I)=\operatorname{det}(I-\alpha)=\operatorname{det}(-I) \operatorname{det}(\alpha-I)$, since $\operatorname{det}(-I)=-1 \Rightarrow \operatorname{det}(\alpha-I)=-\operatorname{det}(\alpha-I)$ or $\operatorname{det}(\alpha-I)=0$. In n dimensions we have $\operatorname{det}(I)=(-1)^{n}$ so the above proof is only valid if n is odd.
Any α in $S O(n)$ with nodd leaves invariant at least one non-zero vector. $G \subseteq S O(3)$, and $\alpha \in G \backslash\{e\}$ leaves precisely one line of vectors point wise fixed, and hence has precisely two fixed points on the unit sphere, M . Thus the formula

$$
\begin{equation*}
|Y|=\sum_{\alpha}|F P(\alpha)| \tag{1.5}
\end{equation*}
$$

simplifies to

$$
\begin{equation*}
|Y|=2\left(\left|G_{m}\right|-1\right) \tag{1.6}
\end{equation*}
$$

-1 comes from the fact that e is excluded. Now let

$$
\begin{align*}
& n=|G| \\
& r=\mid(\text { Orbits of } \mathrm{G} \text { on } \mathrm{P}) \mid \tag{1.7}\\
& \mathrm{n}_{\mathrm{i}}=\left|G_{m}\right| \text { where } \mathrm{m} \in \mathrm{ith} \text { orbit }
\end{align*}
$$

This gives us

$$
\begin{equation*}
2(n-1)=\sum_{i=1}^{r} \frac{n}{n_{i}}\left(n_{i}-1\right) \tag{1.8}
\end{equation*}
$$

If we divide (1.8) with n we get

$$
\begin{equation*}
2-\frac{2}{n}=r-\sum_{1}^{r} \frac{1}{n_{i}} \tag{1.9}
\end{equation*}
$$

This eqn. impose severe restrictions on r, n and n_{i}.
Since P consists of points which are held fixed by at least one element of G apart from the identity, we can be sure that $G_{m} \neq\{e\}$ for $m \in P$ hence $\left|G_{m}\right| \geq 2$ thus all the $n_{i} \geq 2$, and the right-hand side of the above eqn. is not less than $r-\frac{r}{2}$. It follows that $\frac{r}{2}<2 \Rightarrow r<4$, so there are at most 3 orbits. But $r=1$ is also excluded since $n_{i}<n$ thus

$$
\begin{equation*}
2-\frac{2}{n}=1-\frac{1}{n_{i}} \tag{1.10}
\end{equation*}
$$

Is impossible, which gives $r=2,3$, let's look at them separately.
$2.2 r=2$
(1.9) becomes $\frac{2}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}$

Since $n_{i} \leq n$ this is only possible if $n_{1}=n_{2}=n$, which implies that $G_{m}=G$ for each pole. Thus all rotations are about a fixed axis. The group G thus consists of all rotations through angels $\frac{2 \pi}{n}$ about a fixed axis. $G=C_{n}$
$2.3 r=3$
(1.9) becomes $1+\frac{2}{n}=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}$

We can, without any loss of generality, suppose that $n_{1} \leq n_{2} \leq n_{3}$. This gives us some separate cases.

1. $n_{1}=n_{2}=2$, then $2 n_{3}=n$ hence \exists two poles, p and p^{\prime}, in $O(3)$.
$\forall g \in G, g$ either fixes both or interchanges them. So G is
rotations about a line $l=\left(p, p^{\prime}\right)$ or rotations by π about a line $l^{\prime} \perp l$. G will be the group of regular n_{3}-gon, that is, the dihedral group $D_{n_{3}}$.
$n_{1}=2$ and $2<n_{2} \leq n_{3}$, then there are some options for $\left(2, n_{2}, n_{3}\right)$.
2. $(2,3,3), n=12$ For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_{p}=G_{3}$ operates on $O(2)$ and $n_{3}=3$, so $G_{p} \cdot q$ is a set of three closest neighbors of p. i.e. the set obtained by the rotation about $p . \exists 4$ equilateral triangles which form a regular tetrahedron. Thus $G=T$
3. $(2,3,4), n=24$, For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_{p}=G_{3}$ operates on $O(2)$ and $n_{3}=4$, so $G_{p} \cdot q$ is a set of four closest neighbors of p. i.e. the set obtained by the rotations about p. $\exists 6$ squares which form a cube. Thus $G=O$.
4. $(2,3,5), n=60$, For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_{p}=G_{3}$ operates on $O(2)$ and $n_{3}=5$, so $G_{p} \cdot q$ is a set of five closest neighbors to p. i.e. the set obtained by the rotations about p. These poles are equally spaced, and so form a regular pentagon in \mathbb{R}^{3}. $\exists 12$ Pentagons, forming a reg. dodecahedron. Thus $\mathrm{G}=1$.

Hence every finite subgroup $G \subseteq S O(3)$ is one of the following.
I. C_{k} : The cyclic group, of rotations by multiples of $2 \pi / k$ about a line
II. D_{k} :The dihedral group, of symmetries of a regular k-gon.
III. T : The tetrahedral group, of twelve rotations carrying a regular tetrahedron to itself.
IV. O : The octahedral group, of order 24 of rotations of a cube or regular octahedron.
V. I : The icosahedra group, of order 60 of rotations of a regular dodecahedron or regular icosahedrons.

One can now exclude all angels of rotation other than $2 \pi / k$ with $k=1,2,3,4,6$, this due to the preservation of a polyhedron after rotation, hence after this restriction we have narrowed our list of subgroups down to 11 (see table 1).

Tetrahedron

Octahedron

3 Non-rotation groups containing -I

From the 11 rotation groups we can get 11 non-rotating groups by including -1 , and let G_{+}be all subgroups with a where $\operatorname{det} a=1$ and G_{-} are the sets of elements where $\operatorname{det} a=-1$.
3.1 The cyclic group, C_{k}

3.1.1 C_{1}

Contains only the identity so by including -I we get a two element group called C_{i}, which is isomorphic to C_{2}, but C_{i} and C_{2} are not conjugate subgroups of $\mathrm{O}(3)$.
3.1.2 C_{2}

Consists of the identity, I, and a 180° rotation R_{π}. The identity constitutes a normal subgroup of index 2 , which we use as G_{+}. The 180° rotation is $(-I) G_{-}$, if we multiply the 180° rotation with -I we get

$$
\bar{R}_{\pi}=\left[\begin{array}{ccc}
1 & 0 & 0 \tag{1.11}\\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right]
$$

Which is a reflection in the xy-plane. The resulting group $C_{s}=\left\{I, \bar{R}_{\pi}\right\}$. C_{s} and C_{2} are (of course) isomorphic but they are different subgroups of O (3).

3.1.3 C3

As it contains an odd number of elements and can hence not contain any normal subgroups with index 2 . There is possible though to obtain a six-element non-rotating group, by multiplying each element with the inverse $-I$. the three new elements are rotations through 180°, $120^{\circ}+180^{\circ}=300^{\circ}$ and $-120^{\circ}+180^{\circ}=60^{\circ}$ all followed by a reflection in the $x y-$ plane. This is the S^{6} group which is isomorphic to C_{6}, but the odd rotations through $60^{\circ}, 180^{\circ}$ and 300° are multiplied by a reflection in the xy-plane.

Figure 1: s ${ }^{6}$ symmetry

3.1.4 C_{4}

With -I, we obtain the group $C_{4 h}$ whose elements are the rotations 0°, $90^{\circ}, 180^{\circ}$ and 270°, and the same rotations with a reflection in the xyplane.

Figure 2: $\mathrm{C}_{\mathbf{4}}$ symmetry

3.1.5 C_{6}

Together with -I gives the 12 -element group $C_{6 n}$.
3.2 The dihedral group, D_{k}

Q: What's hot, chunky, and acts on a polygon? ${ }^{1}$

$3.2 .1 \mathrm{D}_{2}$

Consists of the identity and rotations about the axis's, when multiplied with - I, we get (in addition to -I) reflections in the coordinate planes, this the resulting eight-element group is called $D_{2 h}$.

Figure 3: $\mathrm{D}_{\mathbf{2 h}}$ symmetry

[^0]
3.2.2 D_{3}

If we multiply the rotation elements $0^{\circ}, 120^{\circ}$ and 240° by -I , and get rotations through $60^{\circ}, 180^{\circ}$ and 300°, and a reflection in the horizontal plane. This results in the $D_{3 d}$ group, where d refers to diagonal reflection planes, which bisects the angels between the rotation axes.

Figure 4: $D_{3 d}$ symmetry

3.2.4 D_{4} and D_{6}

By multiplication of $-I$ to the groups we get $D_{4 h}$ with 16 elements and $\mathrm{D}_{6 \mathrm{~h}}$ With 24 elements, respectively. These are the complete symmetry groups to the square and the hexagon, respectively.

3.3 The tetrahedral group, T

By multiplying each element of the group T by the inverse, $-I$, we add 12 more elements to complete the group T_{h}. This can be visualized as the symmetry group of a cube with "right hand" objects to the tetrahedron of four vertices and "left hand" objects to the other four vertices. Those elements with the determinant of +1 preserves the two tetrahedrons and those with determinant of -1 interchanges them.

Figure 5: T_{h} symmetry

3.4 The octahedral group, O

By multiplication of each element in O by $-I$, we get O_{h}. This is the group of all symmetries of a cube and contains 48 elements.

4 Non-rotation groups not containing - I

4.1 The cyclic group, C_{k}

4.1.1 C_{2}

We can also get a four element group by including -I, this is the group $C_{2 h}=\left\{I,-I, R_{\pi}, \bar{R}_{\pi}\right\}$ it's called $C_{2 h}$ because it contains both a two-fold rotation axis and a horizontal reflection plane perpendicular to that axis. $C_{2 h}$ is Abelian, but is not isomorphic to the cyclic group C_{4}.
4.1.2 C_{4}

Since we have a normal subgroup with index 2 consisting of the identity, I, and a 180° rotation, R. We can get a four-element group by multiplying the 90° and 270° by -1 , which gives us S^{4} whom are isomorphic to C^{4} but 90° and 270° are reflected in the xy-plane.

Figure 6: $\mathbf{S}^{\mathbf{4}}$ symmetry

4.1.3 C_{6}

Since C_{3} is a normal subgroup of C_{6} with index 2 , we can construct a six-element non-rotating group from C_{6} by multiplying the $60^{\circ}, 180^{\circ}$ and 300° rotations (which are the ones not in C_{3}), by -1 , gives us 240°, 0° and 120°, respectively, (all multiplied by a reflection in the plane). This is the $C_{3 h}$ group containing rotations $0^{\circ}, 120^{\circ}$ and 240°, each with or without reflection in the plane.

Figure 7: $\mathrm{C}_{\mathbf{3 h}}$ symmetry
4.2 The dihedral group, D_{k}

$4.2 .1 \mathrm{D}_{2}$

D_{2} consists of three equivalent normal subgroups of index 2 , so we choose the one with I and the 180° rotation about the vertical z-axis as G_{+}. Multiplying the 180° rotation about the x - and y-axis by $-I$, we obtain a reflection in xz- and yz-planes, this resulting group is called $C_{2 v}$, where v indicates the presence of vertical reflection planes.

Reflection plane
Figure 8: $\mathbf{C}_{\mathbf{2 v}}$ symmetry

4.2.2 D_{3}

Since D_{3} contains C_{3} as a normal subgroup with index 2 , we can obtain $\mathrm{C}_{3 v}$, by multiplying the three 180° rotations with -1 , this gives us three reflections in the plane.

Figure 9: $\mathrm{C}_{3 \mathrm{v}}$ symmetry

4.2.4 D_{4} and D_{6}

If we multiply all the 180° rotations with $-I$, we get $D_{4 v}$ and $D_{6 v}$, respectively. Which include reflection in the vertical planes. Starting with D_{3}, as a normal subgroup to D_{6} with index 2 , we might obtain the 12 -element group $D_{3 h}$, which is the complete symmetry group of the equilateral triangle.

Figure 10: $\mathrm{C}_{4 \mathrm{v}}$ symmetry

Figure 11: $\mathrm{D}_{2 \mathrm{~d}}$ symmetry

Figure 12: $\mathrm{C}_{6 \mathrm{v}}$ symmetry
4.4 The octahedral group, O

By choosing T as a normal subgroup of O , and multiplying each of the 12 elements in O which is not in T by -I , we obtain $\mathrm{T}_{\mathrm{d}} . \mathrm{T}_{\mathrm{d}}$ is the group of all symmetries, including reflections, of the tetrahedron. T_{d} is isomorphic to the permutation group S_{4}.

Figure 13: T_{d} symmetry

Rotation groups		Non-rotation groups containing -I		Non-rotation groups not containing -	
S	$\mathrm{H}-\mathrm{M}$	S	$\mathrm{H}-\mathrm{M}$	S	$\mathrm{H}-\mathrm{M}$
C_{1}	1	C_{i}	$\overline{1}$		
C_{2}	2	$\mathrm{C}_{2 \mathrm{~h}}$	$2 / \mathrm{m}$	C_{5}	m
C_{3}	3	$\mathrm{~S}^{6}$	$\overline{3}$		
C_{4}	4	$\mathrm{C}_{4 \mathrm{~h}}$	$4 / \mathrm{m}$	S^{4}	$\overline{4}$
C_{6}	6	$\mathrm{C}_{6 \mathrm{~h}}$	$6 / \mathrm{m}$	$\mathrm{C}_{3 \mathrm{~h}}$	$3 / \mathrm{m}$
D_{2}	222	$\mathrm{D}_{2 \mathrm{~h}}$	mmm	$\mathrm{C}_{2 \mathrm{v}}$	mm 2
D_{3}	32	$\mathrm{D}_{3 \mathrm{~d}}$	$\overline{3} \mathrm{~m}$	$\mathrm{C}_{3 \mathrm{v}}$	3 m
D_{4}	422	$\mathrm{D}_{4 \mathrm{~h}}$	$4 / \mathrm{mmm}$	$\mathrm{C}_{4 \mathrm{v}}$	4 mm
				$\mathrm{D}_{2 \mathrm{~d}}$	$\overline{4} 2 \mathrm{~m}$
D_{6}	62	$\mathrm{D}_{6 \mathrm{~h}}$	$6 / \mathrm{mmm}$	$\mathrm{C}_{6 \mathrm{v}}$	6 mm
				$\mathrm{D}_{3 \mathrm{~h}}$	$\overline{6} 2 \mathrm{~m}$
T	23	$\mathrm{~T}_{\mathrm{h}}$	m 3		
O	432	O_{h}	m 3 m	$\mathrm{~T}_{\mathrm{d}}$	$\overline{4} 3 \mathrm{~m}$

Table 1: Complete table of
(interesting) subgroups of O_{3} and SO_{3}

[^0]: ${ }^{1}$ A: Dihedral soup.

