Symmetrier, Grupper & Algebror

The finite subgroups of SO(3) and O(3)

Tore Fredriksson Karlstads universitet FYSCD05 2006-05-01

1. Finite subgroups of the Orthogonal group O(3)

The group of all 3×3 orthogonal matrices, in other words all orthogonal transformations in Euclidian 3-D space.

1.1 Intro

The group O(3) contains all rotations in 3 dimensions, there are some basic ones, e.g. rotation about an axis (1.1), reflection in a plane (1.2) or a reflection in the origin (1.3).

$$R_{x}(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_{z}(\theta) = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{yz} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$R_{xz} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$R_{xy} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$(1.2)$$

$$R_{xy} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$-I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$

$$(1.3)$$

(1.3) can also be seen as e.g. first a rotation of π about the z axis and then a reflection in the *xz*-plane.

Now there exists some non-trivial finite subgroups to, we find that there are three types of subgroups, rotation groups (*chap. 2*), Non-rotating groups with -I and non-rotating groups not containing -I. Let's start from the top.

2. Special Orthogonal group or Rotation group SO(3)

2.1 Intro

The set of all rotations about the origin of 3-dimensional Euclidean space, \mathbb{R}^3 . The special orthogonal group is defined to be $SO(3) = \{A \in GL(3,\mathbb{R}) \mid A^tA = I, \det A = 1\}$, a matrix A represents a rotation about the origin iff $A \in SO(3)$, hence SO(3) is called the *rotation group*. Every $\alpha \neq e$, $\alpha \in SO(3)$, is a rotation about some axis, this needs some vector \vec{v} in \mathbb{R}^3 s.t. $\alpha \vec{v} = \vec{v}$. Then a will carry the plane perpendicular to \vec{v} into itself and since $\det a = 1$ we see that α is a rotation in this plane. i.e. α is a rotation about the axis through \vec{v} , to prove the existence of such a \vec{v} we must prove the $\alpha - I$ has a non-trivial kernel, i.e. that

$$\det(\alpha - I) = 0 \tag{1.4}$$

 $\alpha \alpha^{t} = I \Rightarrow \alpha^{t} = \alpha^{-1}$, thus giving us $\alpha - I = \alpha(I - \alpha^{-1}) = \alpha(I - \alpha^{t})$ which then gives us $\det(I - \alpha^{t}) = \det(I - \alpha)^{t} = \det(I - \alpha)$, since $\det(\alpha) = 1$ (by hypothesis). $\det(\alpha - I) = \det(I - \alpha) = \det(-I) \det(\alpha - I)$, since $\det(-I) = -1 \Rightarrow \det(\alpha - I) = -\det(\alpha - I)$ or $\det(\alpha - I) = 0$. In n dimensions we have $\det(I) = (-1)^{n}$ so the above proof is only valid if *n* is odd. Any α in *SO*(*n*) with *n* odd leaves invariant at least one non-zero vector. $G \subseteq SO(3)$, and $\alpha \in G \setminus \{e\}$ leaves precisely one line of vectors point wise fixed, and hence has precisely two fixed points on the unit sphere, M. Thus the formula

$$|Y| = \sum_{\alpha} |FP(\alpha)| \tag{1.5}$$

simplifies to

$$|Y| = 2(|G_m| - 1) \tag{1.6}$$

-1 comes from the fact that e is excluded. Now let

$$n = |G|$$

$$r = |(\text{Orbits of G on P})| \qquad (1.7)$$

$$n_{i} = |G_{m}| \text{ where } m \in \text{ith orbit}$$

This gives us

$$2(n-1) = \sum_{i=1}^{r} \frac{n}{n_i} (n_i - 1)$$
(1.8)

If we divide (1.8) with n we get

$$2 - \frac{2}{n} = r - \sum_{i=1}^{r} \frac{1}{n_i}$$
(1.9)

This eqn. impose severe restrictions on r, n and n_i .

Since P consists of points which are held fixed by at least one element of G apart from the identity, we can be sure that $G_m \neq \{e\}$ for $m \in P$ hence $|G_m| \ge 2$ thus all the $n_i \ge 2$, and the right-hand side of the above eqn. is not less than $r - \frac{r}{2}$. It follows that $\frac{r}{2} < 2 \Rightarrow r < 4$, so there are at most 3 orbits. But r = 1 is also excluded since $n_i < n$ thus

$$2 - \frac{2}{n} = 1 - \frac{1}{n_i} \tag{1.10}$$

Is impossible, which gives r = 2,3, let's look at them separately.

2.2 r=2

(1.9) becomes $\frac{2}{n} = \frac{1}{n_1} + \frac{1}{n_2}$

Since $n_i \le n$ this is only possible if $n_1 = n_2 = n$, which implies that $G_m = G$ for each pole. Thus all rotations are about a fixed axis. The group G thus consists of all rotations through angels $\frac{2\pi}{n}$ about a fixed axis.

$$G = C_n$$

(1.9) becomes $1 + \frac{2}{n} = \frac{1}{n_1} + \frac{1}{n_2} + \frac{1}{n_3}$

We can, without any loss of generality, suppose that $n_1 \le n_2 \le n_3$. This gives us some separate cases.

1. $n_1 = n_2 = 2$, then $2n_3 = n$ hence \exists two poles, p and p', in O(3). $\forall g \in G$, g either fixes both or interchanges them. So G is rotations about a line l = (p, p') or rotations by π about a line $l' \perp l$. G will be the group of regular $n_3 - \text{gon}$, that is, the dihedral group D_{n_3} .

- $n_1 = 2$ and $2 < n_2 \le n_3$, then there are some options for $(2, n_2, n_3)$.
 - 2. (2,3,3), n=12 For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_p = G_3$ operates on O(2) and $n_3 = 3$, so $G_p \cdot q$ is a set of three closest neighbors of p. i.e. the set obtained by the rotation about p. $\exists 4$ equilateral triangles which form a regular tetrahedron. Thus G = T
 - 3. (2,3,4), n = 24, For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_p = G_3$ operates on O(2) and $n_3 = 4$, so $G_p \cdot q$ is a set of four closest neighbors of p. i.e. the set obtained by the rotations about p. $\exists 6$ squares which form a cube. Thus G = O.
 - 4. (2,3,5), n = 60, For $p \in O(3)$, let $q \in O(2)$ be a pole nearest to p. Then $G_p = G_3$ operates on O(2) and $n_3 = 5$, so $G_p \cdot q$ is a set of five closest neighbors to p. i.e. the set obtained by the rotations about p. These poles are equally spaced, and so form a regular pentagon in \mathbb{R}^3 . $\exists 12$ Pentagons, forming a reg. dodecahedron. Thus G = I.

Hence every finite subgroup $G \subseteq SO(3)$ is one of the following.

- I. C_k : The *cyclic group*, of rotations by multiples of $2\pi/k$ about a line
- II. D_k : The *dihedral group*, of symmetries of a regular k-gon.
- III. *T*: The *tetrahedral group*, of twelve rotations carrying a regular tetrahedron to itself.
- IV. *O*: The *octahedral group*, of order 24 of rotations of a cube or regular octahedron.
- V. *I*: The *icosahedra group*, of order 60 of rotations of a regular dodecahedron or regular icosahedrons.

One can now exclude all angels of rotation other than $2\pi/k$ with k = 1, 2, 3, 4, 6, this due to the preservation of a polyhedron after rotation, hence after this restriction we have narrowed our list of subgroups down to 11 (*see table 1*).

Tetrahedron

Octahedron

Dodecahedron

Icosahedron

3 Non-rotation groups containing –I

From the 11 rotation groups we can get 11 non-rotating groups by including -I, and let G_+ be all subgroups with a where det a = 1 and G_- are the sets of elements where det a = -1.

3.1 The cyclic group, C_k

3.1.1 C₁

Contains only the identity so by including -I we get a two element group called C_i, which is isomorphic to C₂, but C_i and C₂ are not conjugate subgroups of O(3).

3.1.2 C₂

Consists of the identity, I, and a 180° rotation R_{π} . The identity constitutes a normal subgroup of index 2, which we use as G_{+} . The 180° rotation is $(-I)G_{-}$, if we multiply the 180° rotation with -I we get

$$\overline{R}_{\pi} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
(1.11)

Which is a reflection in the *xy*-plane. The resulting group $C_s = \{I, \overline{R}_{\pi}\}$.

 C_s and C_2 are (of course) isomorphic but they are different subgroups of O(3).

3.1.3 C₃

As it contains an odd number of elements and can hence not contain any normal subgroups with index 2. There is possible though to obtain a six-element non-rotating group, by multiplying each element with the inverse -I. the three new elements are rotations through 180° , $120^{\circ} + 180^{\circ} = 300^{\circ}$ and $-120^{\circ} + 180^{\circ} = 60^{\circ}$ all followed by a reflection in the *xy*plane. This is the S^{6} group which is isomorphic to C_{6} , but the odd rotations through 60° , 180° and 300° are multiplied by a reflection in the *xy*-plane.

Figure 1: s⁶ symmetry

$3.1.4 C_4$

With -I, we obtain the group C_{4h} whose elements are the rotations 0°, 90°, 180° and 270°, and the same rotations with a reflection in the *xy*-plane.

Figure 2: C_{4h} symmetry

 $3.1.5 \ C_{6}$

Together with -I gives the 12-element group C_{6h} .

3.2 The dihedral group, D_k

Q: What's hot, chunky, and acts on a polygon?¹

3.2.1 D₂

Consists of the identity and rotations about the axis's, when multiplied with -I, we get (in addition to -I) reflections in the coordinate planes, this the resulting eight-element group is called D_{2h} .

Figure 3: D_{2h} symmetry

¹ A: Dihedral soup.

3.2.2 D₃

If we multiply the rotation elements 0° , 120° and 240° by -1, and get rotations through 60° , 180° and 300° , and a reflection in the horizontal plane. This results in the D_{3d} group, where d refers to diagonal reflection planes, which bisects the angels between the rotation axes.

Figure 4: D_{3d} symmetry

$3.2.4 \ D_4 \ and \ D_6$

By multiplication of -I to the groups we get D_{4h} with 16 elements and D_{6h} With 24 elements, respectively. These are the complete symmetry groups to the square and the hexagon, respectively.

3.3 The tetrahedral group, T

By multiplying each element of the group T by the inverse, -I, we add 12 more elements to complete the group T_h . This can be visualized as the symmetry group of a cube with "right hand" objects to the tetrahedron of four vertices and "left hand" objects to the other four vertices. Those elements with the determinant of +1 preserves the two tetrahedrons and those with determinant of -1 interchanges them.

Figure 5: T_h symmetry

3.4 The octahedral group, O

By multiplication of each element in O by -I, we get O_h . This is the group of all symmetries of a cube and contains 48 elements.

4 Non-rotation groups not containing -I

4.1 The cyclic group, C_k

$4.1.1 C_2$

We can also get a four element group by including -I, this is the group $C_{2h} = \{I, -I, R_{\pi}, \overline{R}_{\pi}\}$ it's called C_{2h} because it contains both a two-fold rotation axis and a horizontal reflection plane perpendicular to that axis. C_{2h} is Abelian, but is not isomorphic to the cyclic group C_4 .

4.1.2 C₄

Since we have a normal subgroup with index 2 consisting of the identity, I, and a 180° rotation, *R*. We can get a four-element group by multiplying the 90° and 270° by -I, which gives us S^4 whom are isomorphic to C^4 but 90° and 270° are reflected in the *xy*-plane.

Figure 6: S⁴ symmetry

4.1.3 C₆

Since C_3 is a normal subgroup of C_6 with index 2, we can construct a six-element non-rotating group from C_6 by multiplying the 60°, 180° and 300° rotations (which are the ones not in C_3), by –I, gives us 240°, 0° and 120°, respectively, (all multiplied by a reflection in the plane). This is the C_{3h} group containing rotations 0°, 120° and 240°, each with or without reflection in the plane.

Figure 7: C_{3h} symmetry

4.2 The dihedral group, D_k

$4.2.1 D_2$

 D_2 consists of three equivalent normal subgroups of index 2, so we choose the one with I and the 180° rotation about the vertical z-axis as G_+ . Multiplying the 180° rotation about the x- and y-axis by -I, we obtain a reflection in xz- and yz-planes, this resulting group is called C_{2v} , where v indicates the presence of vertical reflection planes.

4.2.2 D₃

Since D_3 contains C_3 as a normal subgroup with index 2, we can obtain C_{3v} , by multiplying the three 180° rotations with -I, this gives us three reflections in the plane.

Figure 9: C_{3v} symmetry

4.2.4 D_4 and D_6

If we multiply all the 180° rotations with -I, we get D_{4v} and D_{6v} , respectively. Which include reflection in the vertical planes. Starting with D_3 , as a normal subgroup to D_6 with index 2, we might obtain the 12-element group D_{3h} , which is the complete symmetry group of the equilateral triangle.

Figure 10: C_{4v} symmetry

Figure 11: D_{2d} symmetry

Figure 12: C_{6v} symmetry

4.4 The octahedral group, O

By choosing T as a normal subgroup of O, and multiplying each of the 12 elements in O which is not in T by -I, we obtain T_d . T_d is the group of all symmetries, including reflections, of the tetrahedron. T_d is isomorphic to the permutation group S_4 .

Figure 13: T_d symmetry

Rotation groups		Non-rotation groups containing -I		Non-rotation groups not containing -I	
S	H-M	S	H-M	S	H-M
C ₁	1	Ci	ī		
C ₂	2	C_{2h}	2/m	C ₅	m
C ₃	3	S^6	3		
C ₄	4	C_{4h}	4/m	S^4	$\overline{4}$
C ₆	6	C _{6h}	6/m	C _{3h}	3/m
D_2	222	D_{2h}	mmm	C _{2v}	mm2
D ₃	32	D_{3d}	3m	C _{3v}	3m
D_4	422	D_{4h}	4/mmm	C _{4v}	4mm
				D_{2d}	$\overline{4}$ 2m
D ₆	62	D _{6h}	6/mmm	C _{6v}	6mm
				D _{3h}	6 2m
Т	23	T _h	m3		
0	432	O _h	m3m	T _d	

Table 1: Complete table of (interesting) subgroups of O₃ and SO₃