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Abstract

This paper briefly discuss the main formulations of classical mechanics, retraces the steps made in A Brief
Review of Helmholtz Conditions by Kushagra Nigam and Kinjal Banerjee [1] and discusses the Helmholtz
conditions. No new theoretical results are presented in this paper as the main goal was to learn about the
Helmholtz conditions enough to be able to hold a short presentation on the subject.
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1 Introduction

The principles of classical mechanics were first expressed back in 1687 by Sir Isaac Newton in his Philosophiae
Naturalis Principia Mathematica [2] and the core idea is to be able to predict the evolution of a system if given
its initial state at some time t0. This is done by obtaining and solving the equations of motion for a given
system. In Lagrangian mechanics in particular the equations of motion are obtained from the Euler-Lagrange
equations by inserting a function, called the Lagrangian, and solving the resulting equations.

In this paper we will discuss the Helmholtz conditions, which are a set of conditions that guarantee that a
Lagrangian exists such that the Euler-Lagrange equations can be obtained from a given set of second order
ordinary differential equations. We will mainly be retracing the steps made in [1] and expanding upon some
of the steps that are kept brief in the original paper. The focus of this paper was to learn about the Helmholtz
conditions and thus the decision to expand upon some of the steps in the derivations that might seem trivial to
the reader, were made for the authors sake of understanding. Ultimately, this paper does not present any new
results but highlights existing results about the Helmholtz conditions in an easy to read way that requires only
basic understanding of multivariable calculus. At the end of the paper two examples are explicitly worked
through to illustrate the use of the Helmholtz conditions.

It should be noted that the Helmholtz conditions are a general set of conditions and are not bound to problems
in classical mechanics (where a Lagrangian can always be constructed). Indeed any system of second order
differential equations that satisfy the conditions must have a Lagrangian associated with it. This makes the
Helmholtz conditions useful as a check if one can apply the variation calculus/Lagrangian mechanics toolbox
to a problem where it is not known from the start if any Lagrangian can be constructed. One such example is
a purely mathematical problem where a set of differential equations appear. It might not exist any straight
forward way to construct a Lagrangian (in comparison to classical mechanics where L = T − V often is a
straight forward approach to obtaining a Lagrangian for a system). The Helmholtz conditions can be used for
such a problem to check if it at least is possible to construct a Lagrangian for the system.

One has to mention that others have taken various different approaches (not covered in this paper) in analyzing
the Helmholtz conditions. Approaches range from geometrical [3] to investigating morphisms of the conditions
[4] as well as finding a multiplier matrix which when applied to a set of differential equations return the
Euler-Lagrange equations [5].

2 The major formulations of classical mechanics

2.1 The Newtonian formalism

The cornerstones in the Newtonian formalism are Newton’s three laws [6].

Newton’s first law: A body which have no external forces acting on it will move at constant velocity and if
the body is at rest it will remain at rest until acted upon by an external force.

Newton’s first law is used to define the concept of an inertial frame := a frame moving at constant velocity, i.e
a non-accelerated frame.

Newton’s second law: The force acting upon an object is equal to the mass of the object times its acceleration.

~F = m~a = m
d~v

dt
= m

d~̇r

dt
= m

d2~r

dt2
(1)

The momentum of an object is defined as ~p = m~v. It is therefore equivalent to write Newton’s second law in
it’s momentum form.

~F =
d~p

dt
(2)

Newton’s third law: Every action has an equal and opposite reaction. Meaning that if a body exerts a force
on another body, the second body will act with a force of equal magnitude back at the first body but directed
in the opposite direction.

Problems in classical mechanics solved using the Newtonian formalism boil down to deriving the equations
of motion by solving Newton’s second law, which is commonly rewritten as three coupled second-order
differential equations.
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Example: A body moving in the ~x, ~y and ~z directions could be described by the three coupled differential
equations:

Fx = m
d2x

dt2
; Fy = m

d2y

dt2
; Fz = m

d2z

dt2
;

Given initial conditions it is then possible to find a unique solution by suitably combining the above equations.

The Newtonian formalism is useful for solving single body problems and problems with low amount of
constraints, but quickly becomes labor-some if the problems involve multiple bodies (each body requires their
own set of coupled differential equations, so a system of N bodies require 3N number of equations) with
constraints (each constraint introduce an unknown constraint force and ALL constraint forces has to be solved
for in order to obtain the equations of motion). In comparison the Lagrangian formalism is set up such that
it always produces the minimum number of equations needed in order for the dynamics of a system to be
fully described [6]. Lagrangian mechanics also deal with energy-related quantities rather than forces. Any
student that has taken an introductory course in mechanics should be familiar with how many simplifications
that can be made when problems can be expressed in terms of the systems energy. Furthermore Lagrangian
mechanics deal with generalized coordinates and as such holds in all coordinate systems, both inertial and non
inertial. In comparison Newton’s first law is the definition of an inertial frame and by extension the Newtonian
formalism is only valid in these inertial/non-accelerated frames.

2.2 The Lagrangian formalism

The Lagrangian formalism is a reformulation of Newtonian mechanics and as such does not introduce any
new physics, but rather it provides a more systematic and mathematically sophisticated framework over the
Newtonian formalism [7]. It is based upon a variational principle called the principle of least action/Hamilton’s
principle which states that the true evolution of a system is obtained when the action integral

S[q, q̇, t] :=

∫ t2

t1

L · dt (3)

takes on a stationary/minimum value. L is called the Lagrangian and is a function that depends on the position
q and velocity q̇ of the systems generalized coordinates, as well as on time t.

L = L(q, q̇, t) (4)

An alternative definition for the Lagrangian is in terms of the kinetic T and potential V energy of a system,

L = T − V (5)

and this way of obtaining the Lagrangian is generally straight forward for most systems encountered in classical
mechanics. By inserting the Lagrangian into equation (3) and demanding Hamilton’s principle to be true yields
the Euler-Lagrange equations.

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (6)

The Euler-Lagrange equations are equivalent to Newton’s second law in classical mechanics, with the added
advantage that it retains its form for any system of generalized coordinates. The equations of motion for a
system are then obtained by solving the Euler-Lagrange equations for the Lagrangian which describes the
system.

2.3 The Hamiltonian formalism

The Hamiltonian formalism is yet another reformulation of classical mechanics, and as such, rather than
introducing any new physics, it offers a new way in which to view the same physics [8]. Much like how
the Lagrangian plays a key role in Lagrangian mechanics, there exists a Hamiltonian that plays a key role in
Hamiltonian mechanics. The Hamiltonian is defined as the sum of a systems kinetic and potential energy

H = T + V. (7)

The Hamiltonian is related to the Lagrangian by a Legendre transformation

H =
∑
i

q̇ipi − L, (8)
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where
pi =

∂L

∂q̇i
(9)

is called the conjugate momentum. While the Lagrangian is given in terms of generalized coordinates and
velocities, the Hamiltonian is expressed in terms of generalized coordinates and the conjugate momenta
instead. This gives another viewpoint where the dynamics of a system does not explicitly depend on the
velocities and the Hamilton equations of motion are given by the following:

dqi
dt

=
∂H

∂pi
(10)

dpi
dt

= −∂H
∂qi

(11)

These equations of motion are first-order differential equations in comparison to the second-order differential
equations obtained from the Euler-Lagrange equations. In n degrees of freedom the dynamics of a system
can either be described by n second order differential equations (Lagrangian formalism) or by 2n first-order
differential equations (Hamiltonian formalism) depending on which method is easier to work with for a given
system. A key advantage of the Hamiltonian formalism is its geometrical representations. Trajectories in time
are equivalent to trajectories along vector fields in phase space in Hamiltonian mechanics, and is a very useful
tool for visualizing the time evolution of a system.

3 Helmholtz conditions

The Helmholtz conditions are a set of conditions that when satisfied, guarantee that a Lagrangian exist such
that a given set of second order differential equations can be expressed as the Euler-Lagrange equations for
the said Lagrangian.

A system with n degrees of freedom can be described by n numbers of second order differential equations.
Without specificity, the differential equations can be denoted as

Fi := Fi(qj , q̇j , q̈j , t) = 0 with i, j = 1, 2, ..., n. (12)

The Helmholtz conditions for such a set of differential equations state that:

Helmholtz 1:st condition:
∂Fi

∂q̈j
=
∂Fj

∂q̈i
(13)

Helmholtz 2:nd condition:
∂Fi

∂qj
− ∂Fj

∂qi
=

1

2

d

dt

[
∂Fi

∂q̇j
− ∂Fj

∂q̇i

]
(14)

Helmholtz 3:rd condition:
∂Fi

∂q̇j
+
∂Fj

∂q̇i
= 2

d

dt

[
∂Fj

∂q̈i

]
(15)

The following proofs for both the necessity and sufficiency of the Helmholtz conditions are heavily based upon
the work of Nigam and Banerjee [1].

3.1 Necessity of the Helmholtz conditions

Determining whether a given system of differential equations can arise as the Euler-Lagrange equations
is called the inverse problem of Lagrangian mechanics [9]. We know that the conditions that allow for a
Lagrangian to exist for such a problem are the Helmholtz conditions. By showing that the Euler-Lagrange
equations satisfy the Helmholtz conditions, which means that the given set of differential equations (i.e
equations of motion) must also satisfy the Helmholtz conditions, we show that the Helmholtz conditions form
a necessary set of conditions.

Consider a Lagrangian with n degrees of freedom/generalized coordinates.

L(qj , q̇j , t) with j = 1, 2, ..., n (16)
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From equation (6) we find that the Euler-Lagrange equations for such a Lagrangian are given by:

∂L

∂qj
− d

dt

∂L

∂q̇j
= 0. (17)

We denote the Euler-Lagrange equation by Ei = Ei(qj , q̇j , q̈j , t) and rearrange equation (17) to coincide with
the notation in [1], yielding:

Ei ≡
d

dt

∂L

∂q̇j
− ∂L

∂qj
= 0. (18)

The differential quantity

δy ≡
(
dy

dα

)
0

dα (19)

represents an infinitesimal change in a variational path compared to the true path, y(x), of the system [10].
Using equation (19) we get that an infinitesimal variation of Ei along a solution path is given by

δEi =

n∑
k=1

[
∂Ei

∂qk
δqk +

∂Ei

∂q̇k
δq̇k +

∂Ei

∂q̈k
δq̈k

]
. (20)

We remind ourself the definition for a total derivative in terms of partial derivatives:

d

dt
=

∂

∂t
+

n∑
j=1

∂

∂qj
q̇j +

n∑
j=1

∂

∂q̇j
q̈j . (21)

Expanding equation (20) using (18) and (21) yields a rather lengthy equation for the variation:

δEi =

n∑
k,j=1

(
∂3L

∂t∂qk∂q·i
+

∂3L

∂qk∂qj∂q̇i
q·j +

∂3L

∂qk∂q·j∂q
·
i

q··j −
∂2L

∂qk∂qi

)
δqk

+

n∑
k,j=1

(
∂3L

∂t∂q̇k∂q̇i
+

∂3L

∂q̇k∂qj∂q̇i
q̇j +

∂3

∂q̇k∂q̇j∂q̇i
q̈j +

∂2L

∂qk∂q̇i
− ∂2L

∂q̇k∂qi

)
δq̇k

+

n∑
k,j=1

(
∂2L

∂q̇k∂q̇i

)
δq̈k.

(22)

Interchanging i←→ k in equation (22) and only looking at the coefficients in the last sum yields

∂2L

∂q̇i∂q̇k
. (23)

By using the identity

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
, (24)

i.e that partial derivatives commute, we can see that the coefficients in the last sum vanish under anti-symmetry.

∂2L

∂q̇k∂q̇i
− ∂2L

∂q̇i∂q̇k
= 0⇐⇒ ∂2L

∂q̇k∂q̇i
=

∂2L

∂q̇i∂q̇k
(25)

Comparison with the last term in equation (20) yields

∂Ei

∂q̈k
=
∂Ek

∂q̈i
, (26)

which is nothing but Helmholtz first condition with Ei and Ek replacing Fi and Fj . By interchanging i←→ k
in equation (22) and subtracting we get the following expression for the coefficients in the second sum:

[
∂Ei

∂q̇k
− ∂Ek

∂q̇i

]
=

(
��

��
�∂3L

∂t∂q̇k∂q̇i
+
HHH

HHH

∂3L

∂q̇k∂qj∂q̇i
q̇j +
�
��

�
��HHH

HHH

∂3

∂q̇k∂q̇j∂q̇i
q̈j +

∂2L

∂qk∂q̇i
− ∂2L

∂q̇k∂qi

)

−

(
��

�
��∂3L

∂t∂q̇i∂q̇k
+
HH

HHHH

∂3L

∂q̇i∂qj∂q̇k
q̇j +
��

��
��HH

HHHH

∂3

∂q̇i∂q̇j∂q̇k
q̈j +

∂2L

∂qi∂q̇k
− ∂2L

∂q̇i∂qk

)

= 2

(
∂2L

∂qk∂q̇i
− ∂2L

∂qi∂q̇k

)
,

(27)
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which we can write

d

dt

[
∂Ei

∂q̇k
− ∂Ek

∂q̇i

]
= 2

d

dt

[
∂2L

∂qk∂q̇i
− ∂2L

∂q̇k∂qi

]
. (28)

Similarly by interchanging i←→ k in equation (22) and subtracting we can see that only the last term in the
first sum vanish under anti-symmetry. We can therefore expand out the right hand side of equation (28) using
equation (21) yielding:

d

dt

[
∂Ei

∂q̇k
− ∂Ek

∂q̇i

]
= 2

d

dt

[
∂2L

∂qk∂q̇i
− ∂2L

∂q̇k∂qi

]

= 2

 ∂3L

∂t∂qk∂q̇i
+

n∑
j=1

∂3L

∂qj∂qk∂q̇i
δq̇j +

n∑
j=1

∂3L

∂q̇j∂qk∂q̇i
δq̈j


−

 ∂3L

∂t∂qi∂q̇k
+

n∑
j=1

∂3L

∂qj∂qi∂q̇k
δq̇j +

n∑
j=1

∂3L

∂q̇j∂qi∂q̇k
δq̈j


= 2

[
∂Ei

∂qk
− ∂Ek

∂qi

]
.

(29)

By rearranging equation (29) we obtain the second Helmholtz condition:

∂Ei

∂qk
− ∂Ek

∂qi
=

1

2

d

dt

[
∂Ei

∂q̇k
− ∂Ek

∂q̇i

]
. (30)

By interchanging i←→ k in equation (22) we saw that the 3:rd order terms vanished under anti-symmetry.
We can see that under symmetry the opposite is true.

[
∂Ei

∂q̇k
+
∂Ek

∂q̇i

]
=

(
∂3L

∂t∂q̇k∂q̇i
+

∂3L

∂q̇k∂qj∂q̇i
q̇j +

∂3

∂q̇k∂q̇j∂q̇i
q̈j +
�
�
��∂2L

∂qk∂q̇i
−
Z
Z
ZZ

∂2L

∂q̇k∂qi

)
+

(
∂3L

∂t∂q̇i∂q̇k
+

∂3L

∂q̇i∂qj∂q̇k
q̇j +

∂3

∂q̇i∂q̇j∂q̇k
q̈j +
Z
Z
ZZ

∂2L

∂qi∂q̇k
−
�
�
��∂2L

∂q̇i∂qk

)
= 2

(
∂3L

∂t∂q̇k∂q̇i
+

∂3L

∂q̇k∂qj∂q̇i
q̇j +

∂3

∂q̇k∂q̇j∂q̇i
q̈j

) (31)

Finally we can use equation (31) to obtain the last Helmholtz condition by comparing the coefficients for the
last term in equation (20) with the coefficients in equation (22):

d

dt

[
∂Ei

∂q̈k

]
=

d

dt

[
∂2L

∂q̇k∂q̇i

]
=

1

2

[
∂Ei

∂q̇k
+
∂Ek

∂q̇i

]
⇐⇒

∂Ei

∂q̇k
+
∂Ek

∂q̇i
= 2

d

dt

[
∂Ei

∂q̈k

] (32)

Starting from the Euler-Lagrange equations we were able to derive the Helmholtz conditions, proving that
indeed the Euler-Lagrange equations satisfy the conditions. We therefore conclude that the Helmholtz
conditions form a necessary set of conditions for the existence of a Lagrangian.

3.2 Sufficiency of the Helmholtz conditions

If the existence of a Lagrangian can be proven for a system of differential equations satisfying the Helmholtz
conditions then this also proves the sufficiency of the Helmholtz conditions. In [1] this is done by first observing
what restriction the Helmholtz conditions impose on the differential equations Fi and in turn what this means
for the Lagrangian L. By expressing the Lagrangian in terms of some other functions which are proven to exist,
this implies that the Lagrangian must also exist. We shall follow the same method as in [1], as this method,
while lengthy, uses simple multivariable calculus tools.

Consider the third Helmholtz condition,
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∂Fi

∂q̇j
+
∂Fj

∂q̇j
= 2

d

dt

[
∂Fj

∂q̈i

]
, (33)

using equation (21) we can expand the right hand side, yielding:

∂Fi

∂q̇j
+
∂Fj

∂q̇j
= 2

[
∂2Fj

∂t∂q̈i
+

∂2Fj

∂qk∂q̈i
q̇k +

∂2Fj

∂q̇k∂q̈i
q̈k +

∂2Fj

∂q̈k∂q̈i

...
qk

]
. (34)

By comparison with equation (31) we see that the left hand side of equation (34) does not contain any ...
qj

terms which tells us that the coefficients of the last term on the RHS must vanish. The only scenario that
allows for this is if the q̈j terms in Fi are linear which implies that Fi is of the form y = a · x+ b, or explicitly

Fi(qk, q̇k, q̈k, t) ≡
∑
j

(αij(qk, q̇k, t)q̈j) + βi(qk, q̇k, t). (35)

By inserting these new Fi’s into the Helmholtz conditions we obtain the following restrictions on Fi, or more
precisely, on αij and βi:

αij = αji, (36)

∂αij

∂q̇k
=
∂αik

∂q̇j
, (37)

∂βi
∂q̇j

+
∂βj
∂q̇i

= 2

(
∂

∂t
+

n∑
k=1

∂

∂qk
q̇k

)
αij , (38)

∂βi
∂qj
− ∂βj
∂qi

=
1

2

(
∂

∂t
+

n∑
k=1

∂

∂qk
q̇k

)(
∂βi
∂q̇j
− ∂βj
∂q̇i

)
. (39)

This is essentially just a different way of expressing the Helmholtz conditions and is the way they are presented
in Sarlet’s paper [5]. Following the method in [1], we partially differentiate the last condition, i.e equation
(39), with respect to q̇l yielding:

∂2βi
∂qj∂q̇l

− ∂2βj
∂qi∂q̇l

=
1

2

(
∂3βi

∂t∂q̇j∂q̇l
− ∂3βj
∂t∂q̇i∂q̇l

+

1∑
k=1

(
∂3βi

∂qk∂q̇j∂q̇l
− ∂3βi
∂qk∂q̇i∂q̇l

)
q̇k +

∂2βi
∂ql∂q̇j

− ∂2βi
∂ql∂q̇i

)
. (40)

By cyclically interchanging the indices i←→ j ←→ l in equation (40), adding together the resulting equations,
rearranging and changing indices we end up with (see [1]):

∂βj
∂qi
− ∂βi
∂qj

+
1

2

(
∂2βi
∂t∂q̇j

− ∂2βj
∂t∂q̇i

+

1∑
k=1

(
∂2βi
∂qj∂q̇k

− ∂2βk
∂qj∂q̇i

+
∂2βk
∂qi∂q̇j

− ∂2βj
∂qi∂q̇k

)
q̇k

)
= 0. (41)

We now bring our attention to the existence of a Lagrangian L(qj , q̇j , t). Start by assuming that a Lagrangian
exists such that the equations of motion Fi can be written as the Euler-Lagrange equations:

Ei = Fi

⇐⇒

∑
j

[
∂2L

∂q̇i∂t
+

∂2L

∂q̇i∂qj
q̇j +

∂2L

∂q̇i∂q̇j
q̈j

]
=
∑
j

(αij(qk, q̇k, t)q̈j) + βi(qk, q̇k, t). (42)

Comparing the q̈j term on both sides in equation (42) we have two relations depending on if the indices are
similar or different from each other:

∂2L

∂q̇i∂q̇i
= αii (43)

∂2L

∂q̇i∂q̇j
= αij . (44)
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An expression for the Lagrangian can be obtained from both equations (43) and (44) by integrating twice
with respect to the relevant velocities. Integrating equation (43) with respect to q̇i and (44) with respect to q̇j
yields:

∂L

∂q̇i
=

∫ q̇i

˙q0i

αii · dq̇i + Cii(qi, qj , q̇j , t) ; i 6= j (45)

∂L

∂q̇i
=

∫ q̇j

˙q0j

αij · dq̇j + Cij(qi, qj , qk, q̇i, q̇k, t) ; i 6= j 6= k. (46)

The Cii and Cij terms are constants of integration and hence do not depend on the respective variable that
was being integrated over. The lower bound terms in the integration are simply arbitrary points. Instead of
preforming the second integration immediately to obtain expressions for L it is convenient to first prove that
the constants of integration are independent in all velocities. This is done by differentiating equations (45)
and (46) with respect to the velocities that the Cii and Cij are functions of. By this method, equation (45) is
differentiated with respect to q̇j to obtain:

∂2L

∂q̇i∂q̇j
=

∫ q̇i

˙q0i

∂αii

∂q̇j
· dq̇i +

∂Cii

∂q̇j
, (47)

which using equation (37) to change indices can be simplified to

∂2L

∂q̇i∂q̇j
= αij +

∂Cii

∂q̇j
. (48)

By comparing equation (48) with (44) it is clear that ∂Cii

∂q̇j
= 0, thus we can conclude that Cii is independent

of q̇j .

Cii = Cii(qi, qj , t) (49)

Similarly Cij can be shown to not depend on any of the velocities by the same method, now repeated for the
two velocities q̇i and q̇k.

Cij = Cij(qi, qj , qk, t) (50)

The final expression for the Lagrangian obtained by integrating equation (46) should involve αij and Cij . We
therefore need to prove that both αij and Cij exists. We can see from equation (37) that dαij forms an exact
differential that exists independent of the integration path followed, which proves that αij must exist [11].
We note that j runs from 1 to n, so we have n equations for ∂L

∂q̇j
. By inserting equation (50) into (46) and

adding all equations together we obtain

n · ∂L
∂q̇i

=

n∑
j=1

[∫ q̇j

˙q0j

αij · dq̇j + Cij(qi, qj , qk, t)

]
. (51)

We simplify our notation by letting q stand for all generalized coordinates, i.e

q = {qi, qj , qk}, (52)

and rewrite equation (51) as follows:

∂L

∂q̇i
=

1

n

n∑
j=1

[∫ q̇j

˙q0j

αij · dq̇j

]
+

1

n

n∑
j=1

Cij(q, t)

=
1

n

∫ q̇1

˙q01

∫ q̇2

˙q02

· · ·
∫ ˙qn

˙q0n

n∑
j=1

αij · dq̇j

+
1

n

n∑
j=1

Cij(q, t).

(53)

From equation (37) we see that the integrand in equation (53) also forms and exact differential and the first
term in equation (53) must therefore exist. We define the following:

Di(q, q̇, t) :=
1

n

∫ q̇1

˙q01

∫ q̇2

˙q02

· · ·
∫ ˙qn

˙q0n

n∑
j=1

αij · dq̇j

 , (54)

which is used to simplify equation (53), yielding:

9



∂L

∂q̇i
= Di(q, q̇, t) +

1

n

n∑
j=1

Cij(q, t). (55)

Integrating equation (55) will yield n equations for L and by adding them together and divide by n we are left
with

L =
1

n

[∫ q̇1

˙q01

∫ q̇2

˙q02

· · ·
∫ ˙qn

˙q0n

n∑
i=1

Di(q, q̇, t) · dq̇i

]
+

1

n

n∑
i=1

 1

n

n∑
j=1

Cij(q, t) · q̇i

+K(q, t), (56)

where K is a constant of integration. We know that Di exists because the integrand
∑n

j=1 αij · dq̇j forms
an exact differential. By the same idea we conclude that the integrand

∑n
i=1Di · dq̇i also forms an exact

differential because we can write a similar expression to equation (37) for Di:

∂Di

∂q̇j
=
∂Dj

∂q̇i
. (57)

Simplifying our notation further by denoting

G(q, q̇, t) :=
1

n

[∫ q̇1

˙q01

∫ q̇2

˙q02

· · ·
∫ ˙qn

˙q0n

n∑
i=1

Di(q, q̇, t) · dq̇i

]
(58)

and

Hi(q, t) :=
1

n2

n∑
j=1

Cij(q, t), (59)

allow us to write the Lagrangian in the following form:

L = G(q, q̇, t) +

n∑
i=1

Hi(q, t) · q̇i +K(q, t). (60)

We have already proven that G exists, thus to prove the existence of L we are left with the proof of H and K ’s
existence. Looking back at equation (42) we note that we have already proven that H and K satisfy the part
which involves the q̈j terms. H and K must surely satisfy the entire expression so we use the remaining part
of equation (42) to prove their existence. Inserting equation (60) into (42) and excluding the q̈j terms yield:

∂Hi

∂t
+

n∑
j=1

[
∂Hi

∂qj
− ∂Hj

∂qi

]
q̇j −

∂K

∂qi
= βi +

∂G

∂qi
−

 n∑
j=1

∂2G

∂qj∂q̇i
q̇j

− ∂2G

∂t∂q̇i
, (61)

where the terms have been rearranged such that everything on the right hand side is in terms of known
functions and everything on the left hand side is in terms of the functions we wish to prove existence for.
Partially integrating equation (61) with respect to q̇k yields:

∂Hi

∂qk
− ∂Hk

∂qi
=
∂βi
∂q̇k

+
∂2G

∂q̇k∂qi
−

 n∑
j=1

∂3G

∂q̇k∂qj∂q̇i
q̇j

− ∂2G

∂qk∂q̇i
− ∂3G

∂q̇k∂t∂q̇i
, (62)

where we have used the fact that both Hi and K are independent in the velocities, so terms such as ∂Hi

∂q̇k
and

∂K
∂q̇k

are identically zero. Interchanging i⇐⇒ k and subtracting yields:

∂Hi

∂qk
− ∂Hk

∂qi
−
(
∂Hk

∂qi
− ∂Hi

∂qk

)
=
∂βi
∂q̇k

+
∂2G

∂q̇k∂qi
−

�
��

�
��

�
��HHH

HHH
HHH

 n∑
j=1

∂3G

∂q̇k∂qj∂q̇i
q̇j

− ∂2G

∂qk∂q̇i
−
��

��
�H

HHHH

∂3G

∂q̇k∂t∂q̇i

−

∂βk
∂q̇i

+
∂2G

∂q̇i∂qk
−

��
��

�
��

��HHH
HHH

HHH

 n∑
j=1

∂3G

∂q̇i∂qj∂q̇k
q̇j

− ∂2G

∂qi∂q̇k
−
��

�
��H

HHHH

∂3G

∂q̇i∂t∂q̇k


⇐⇒

∂Hi

∂qk
− ∂Hk

∂qi
=

1

2

[
∂βi
∂q̇k
− ∂βk
∂q̇i

]
+

∂2G

∂q̇k∂qi
− ∂2G

∂qk∂q̇i
:= φik. (63)
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Substituting equation (63) back into (61) yields:

∂Hi

∂t
+

n∑
j=1

[
1

2

[
∂βi
∂q̇j
− ∂βj
∂q̇i

]
+

∂2G

∂q̇j∂qi
−
�
�
��∂2G

∂qj∂q̇i

]
q̇j −

∂K

∂qi
= βi +

∂G

∂qi
−
��

�
��

�
��

 n∑
j=1

∂2G

∂qj∂q̇i
q̇j

− ∂2G

∂t∂q̇i

⇐⇒

∂Hi

∂t
− ∂K

∂qi
= βi +

∂G

∂qi
− ∂2G

∂t∂q̇i
+

n∑
j=1

(
1

2

[
∂βj
∂q̇i
− ∂βi
∂q̇j

]
q̇j −

∂2G

∂qi∂q̇j
q̇j

)
:= θi. (64)

Noting that if we combine equation (63) and (64) in the following way:

∂φik
∂t
− ∂θi
∂qk

+
∂θk
∂qi

=

1

2

[
∂2βi
∂q̇k∂t

− ∂2βk
∂q̇i∂t

]
+

∂3G

∂q̇k∂qi∂t
− ∂3G

∂qk∂q̇i∂t

−

∂βi
∂qk

+
∂2G

∂qi∂qk
− ∂3G

∂t∂q̇i∂qk
+

∂

∂qk

 n∑
j=1

(
1

2

[
∂βj
∂q̇i
− ∂βi
∂q̇j

]
q̇j −

∂2G

∂qi∂q̇j
q̇j

)
+

∂βk
∂qi

+
∂2G

∂qk∂qi
− ∂3G

∂t∂q̇k∂qi
+

∂

∂qi

 n∑
j=1

(
1

2

[
∂βj
∂q̇k
− ∂βk
∂q̇j

]
q̇j −

∂2G

∂qk∂q̇j
q̇j

)
⇐⇒

∂φik
∂t
− ∂θi
∂qk

+
∂θk
∂qi

=

∂βk
∂qi
− ∂βi
∂qk

+
1

2

(
∂2βi
∂t∂q̇k

− ∂2βk
∂t∂q̇i

+

1∑
k=1

(
∂2βi
∂qk∂q̇j

− ∂2βj
∂qk∂q̇i

+
∂2βj
∂qi∂q̇k

− ∂2βk
∂qi∂q̇j

)
q̇j

)
(65)

and compare equation (65) with (41), we see that

∂φik
∂t
− ∂θi
∂qk

+
∂θk
∂qi

= 0. (66)

If we make the following substitutions,

Ax = Hi

Ay = Hk

Az = K

Bx = −θk
By = θi

Bz = −φik

we see that our definitions for φik, θi and θk simply become

~∇× ~A = ~B, (67)

and equation (66) becomes

~∇ · ~B = 0. (68)

Looking at equation (67) and (68) we should be reminded of electrodynamics, especially equation (68) which
is Gauss’ law of magnetism [12]. By imposing the Coulomb gauge condition (~∇ · ~A = 0) we can derive an
expression for ~A [13].

~A(~r) = ~∇×
∫ ~r

~r0

~B(~r)

4π|~r − ~r′|
d3r′ (69)
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We therefore conclude that ~A must exist and by extension this also implies that both Hi and K exist. All
functions that make up our general Lagrangian have been proven to exist and by extension this implies that
the Lagrangian also exist and that the Helmholtz conditions form a necessary set of conditions. In order to
write the most general form for the existing Lagrangian we utilize the fact that the Euler-Lagrange equations
are invariant under addition of a total time derivative to the Lagrangian. This gives us the following form for
our Lagrangian

L(q, q̇, t) = G(q, q̇, t) +

n∑
i=1

Hi(q, t) · q̇i +K(q, t) +
d

dt
(f(q, t)) (70)

where f(q, t) is some arbitrary function.

4 Examples

4.1 When the Helmholtz conditions are satisfied

Consider a 1-D harmonic oscillator (q = x) whose equations of motion are given by

F (x, ẋ, ẍ, t) ≡ mẍ = −kx, (71)

which can be rewritten as

ẍ+ ω2x = 0 ,where ω :=

√
k

m
. (72)

We calculate all relevant terms

∂F

∂x
= ω2 (73)

∂F

∂ẋ
= 0 (74)

∂F

∂ẍ
= 1 (75)

(76)

and insert them into the Helmholtz conditions:

∂Fi

∂q̈j
=
∂Fj

∂q̈i
⇐⇒ 1 = 1 (77)

∂Fi

∂qj
− ∂Fj

∂qi
=

1

2

d

dt

[
∂Fi

∂q̇j
− ∂Fj

∂q̇i

]
⇐⇒ ω2 − ω2 =

1

2

d

dt
[0− 0] (78)

∂Fi

∂q̇j
+
∂Fj

∂q̇i
= 2

d

dt

[
∂Fj

∂q̈i

]
⇐⇒ 0 + 0 = 2

d

dt
[1] = 0. (79)

All Helmholtz conditions are satisfied and thus a Lagrangian must exist for this system. For the 1-D harmonic
oscillator we know that the Lagrangian is given by:

L(x, ẋ, q̈, t) =
mẋ2

2
− kx2

2
=

1

2

(
ẋ2 − ω2x2

)
. (80)

4.2 When the Helmholtz conditions are not immediately satisfied

Consider a 1-D dampened oscillator (q = x) whose equations of motion are given by

F (x, ẋ, ẍ, t) ≡ ẍ+ bẋ+ ω2x = 0. (81)

We calculate all relevant terms

12



∂F

∂x
= ω2 (82)

∂F

∂ẋ
= b (83)

∂F

∂ẍ
= 1 (84)

(85)

and insert them into the Helmholtz conditions:

∂Fi

∂q̈j
=
∂Fj

∂q̈i
⇐⇒ 1 = 1 (86)

∂Fi

∂qj
− ∂Fj

∂qi
=

1

2

d

dt

[
∂Fi

∂q̇j
− ∂Fj

∂q̇i

]
⇐⇒ ω2 − ω2 =

1

2

d

dt
[b− b]⇐⇒ 0 = 0 (87)

∂Fi

∂q̇j
+
∂Fj

∂q̇i
= 2

d

dt

[
∂Fj

∂q̈i

]
⇐⇒ b+ b = 2

d

dt
[1] = 0⇐⇒ 2b = 0. (88)

We see that the third Helmholtz condition is no longer satisfied and we can no longer guarantee the existence
of a Lagrangian for these equations of motion. Neither the equations of motion, nor the Lagrangian are unique
for a system. However, modifying the equations of motion such that the new equations satisfy the Helmholtz
conditions might still be possible. For the 1-D dampened oscillator this can be done by adding a multiplicative
factor (Jacobi’s last multiplier) to the equations of motion [1].

F (x, ẋ, ẍ, t) ≡ Λ(x, ẋ, t)
(
ẍ+ bẋ+ ω2x

)
= 0 (89)

We calculate all relevant terms

∂F

∂x
=
∂Λ

∂x
·
(
ẍ+ bẋ+ ω2x

)
+ Λ · ω2 (90)

∂F

∂ẋ
=
∂Λ

∂ẋ
·
(
ẍ+ bẋ+ ω2x

)
+ Λ · b (91)

∂F

∂ẍ
= 0 ·

(
ẍ+ bẋ+ ω2x

)
+ Λ · 1 = Λ. (92)

Note that, for 1-D cases, the first two Helmholtz conditions will always be satisfied because there are no indices
to interchange and thus the first two conditions simplify to:

∂F

∂q̈
=
∂F

∂q̈
(93)

∂F

∂q
− ∂F

∂q
=

1

2

d

dt

[
∂F

∂q̇
− ∂F

∂q̇

]
⇐⇒ 0 =

1

2

d

dt
[0]⇐⇒ 0 = 0. (94)

We must however check the third Helmholtz condition so we insert our calculated terms yielding:

∂F

∂q̇
+
∂F

∂q̇
= 2

d

dt

[
∂F

∂q̈

]
⇐⇒

2

(
∂Λ

∂ẋ
·
(
ẍ+ bẋ+ ω2x

)
+ Λ · b

)
= 2

d

dt
[Λ] .

By inspection we see that this imposes two conditions on Λ, namely:

∂Λ

∂ẋ
= 0 (95)

Λ · b =
dΛ

dt
. (96)
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Setting Λ = ebt fulfills both these conditions. Inserting this into the third Helmholtz condition yields:

2

(
∂ebt

∂ẋ
·
(
ẍ+ bẋ+ ω2x

)
+ ebt · b

)
= 2

d

dt

[
ebt
]

⇐⇒

2b · ebt = 2b · ebt. (97)

All Helmholtz conditions are thus satisfied and it is indeed possible to find a Lagrangian for the 1-D dampened
oscillator. One possible such Lagrangian is

L(x, ẋ, t) =
ebt

2

[
ẋ2 − ω2x2

]
, (98)

which has the nice property that if we let the dampening vanish, i.e we let b −→ 0, we obtain the Lagrangian
for the 1-D harmonic oscillator [1].

5 Concluding remarks

By retracing the steps made by K. Nigam and K. Banerjee in A Brief Review of Helmholtz Conditions [1] we
have shown that the Helmholtz conditions form both a necessary and sufficient set of conditions for the
existence of a Lagrangian, such that a set of second order ordinary differential equations can be obtained as
the Euler-Lagrange equations. We have discussed examples of systems where the Helmholtz conditions are
satisfied (1-D harmonic oscillator) and where they were not satisfied (1-D dampened oscillator). In the case of
the dampened oscillator we saw that a system whose equations of motion are expressed such that they do not
satisfy the Helmholtz conditions, does not necessarily lack a Lagrangian, but the method for obtaining one (if
it exist) is generally more involved.
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