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Abstract

This report takes a look at the mechanics of the trebuchet, with the goal to
find out what happens to the projectiles initial speed when the machine is allowed
to move horizontally. In order to find the answer some numerical computation is
used, a small scale model is built and qualitative arguments regarding the equations
of motion are used. The conclusion is that wheels will improve the launch velocity
of the projectile. Finally a more complete model of the siege engine is set up for
a stationary trebuchet and the equations of motion are given. Further calculations
are not covered in this text.
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1 Introduction
This report is part of the course Analytical mechanics (FYGB08) at Karlstad university.
The aim and purpose of this project is to extend the understanding of classical mecha-
nics by examining the motion of different models of the trebuchet.

There are several texts available on the motion of the trebuchet, for instance Mark
Denny’s article ”Siege engine dynamics” [1]. These articles usually have a focus on
numerical solutions of the equations of motion and therefore start with a Lagrangian or
the equations of motion being given. The aim of this text will be to derive the Euler-
Lagrange equations of a few models of the trebuchet and to examine what happens when
the machine is allowed to move horizontally during a shot, i.e. when wheels are attached
to the siege engine.

1.1 A brief history of the trebuchet
The trebuchet was invented in China about 300 B.C. About 800 years later it made it
over to Europe. It was found useful until well after there was gunpowder. The trebuchet
was first used for besieging cities. As a countermeasure to this, city walls were streng-
thened and trebuchets were placed on big towers to defend against attackers. These
machines outperformed catapults by far. The projectiles were heavier and the range was
longer [1, pags 561-563].

During its time of use, the trebuchet was steadily being improved. The earliest ver-
sion, the so called traction-trebuchet did not use a counterweight, instead the projectile
would be accelerated by people pulling on ropes attached to where the counterweight
would later be introduced. After the introduction of the counter weight the next develop-
ment was the hinged counterweight which added power to the machine and decreased
the time necessary to load the weapon between shots. An upgrade to the hinged counter-
weight was propping the counterweight at a certain angle to further increase the power
of the machine [2, pages 68-69].

There is a lot of mechanics behind the motion of the trebuchet and an example of
what could happen when one or more aspects to the motion are neglected is the last
reported use of the trebuchet in battle. This faulty trebuchet was built in 1521 because
of low reserves of ammunition for other weapons. It took quite some time to finish it
and when the first shot was fired it went up in the air (straight up) only to come back
down and crush the trebuchet [2, page 71].
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1.2 Different models
There are different ways of modelling the trebuchet. The absolute simplest model is a
seesaw with the projectile attached to one end of the beam and the counterweight to the
other. This is a good place to start the analysis because then additions can be made to
this seesaw, for instance the counterweight could be hinged to allow it to swing during
the motion. Another improvement of the model would be the addition of a sling that
will hold the projectile rather than letting it be attached to the seesaw beam.

This text will focus on the seesaw model and the model with a hinged counter weight
but without a sling. Calculations will be carried out once with the siege engine fixed and
once where it is allowed to move in laterally. The model with a hinged counter weight
and a sling will also be handled briefly.

1.3 Approximations
To make this study a bit more feasible, friction during the throwing motion will be
neglected and slings will always be assumed to be under tension. Beams and hinges
except the ”main” beam will be considered as massless. The ”main” beam will be
approximated as a thin rod (with moment of inertia Ibeam = 1

12
mbeam(l1+l2)

2) about the
axis which the beam pivots (z- direction in the figures). Projectiles and counterweights
are approximated as point masses. Wheels are assumed to be massless.

1.4 Initial conditions and definitions
The motion is always assumed to start from rest with initial angle θ0 and x0 = 0. The
following definitions will be a guide as to what variables used in calculations represent.

• m is the mass of the projectile

• mbeam is the mass o the main beam, in the figures the centre of mass of the beam
will be marked next to the symbol mbeam

• M is the mass of the counterweight.

• l1 is the distance from the pivot to the ”throwing” end of the main beam

• l2 is the distance from the pivot to the counterweight end of the main beam

• l3 is the length of the arm from the counterweight to the hinge in the cases where
it exists

• l4 is the length of the sling and will be used in the last model
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• ~rm represents the position of the projectile

• ~rmbeam
represents the position of the centre of mass of the main beam

• ~R represents the position of the counterweight

For the siege engine to be effective the counterweight mass has to be much larger
than the masses of the projectile and the beam. It is also a reasonable assumption that
l1 will be larger than l2 regardless of the model. The relations between the different
lengths and masses will not be discussed further in this text, for more information on
optimizing the relations between the masses and distances see [1].

2 The motion of the trebuchet
This section starts by deriving the equation of motion of the seesaw model and a compa-
rison between the case without wheels and with. followed by the model with the hinged
counterweight. Finally the equations of motion for a stationary and more advanced
trebuchet will be derived.

2.1 Seesaw model
y

x mbeam
θl1

l2

Pivot

m

M

Figure 1: A schematic of the seesaw model. the origin is taken to be the pivot point.

This model is a simple seesaw and is solved very explicitly for the stationary case
in [3, pages 6-7], by making use of the conservation of energy, with the result θ̇ =

−
√

2V
I
(sin(θ0)− sin(θ)), where signs have been changed to suit fig. 1 and with V =

Mgl2−mgl1−mbg
l1−l2
2

and I =Ml22 +ml
2
1 +mbeam

(
l1−l2
2

)2

+ Ibeam. Therefore this

model will not be handled further here.
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2.2 Seesaw model on wheels
This model is the same as the previous one with the addition of movement in the x-
direction.

2.2.1 Equations of motion

The positions of the masses are

~rm =
(
x− l1 cos(θ),−l1 sin(θ)

)
,

~rmbeam
=
(
x− (l1 − l2)

2
cos(θ),−(l1 − l2)

2
sin(θ)

)
,

~R =
(
x+ l2 cos(θ), l2 sin(θ)

)
.

The velocities are

~̇rm =
(
ẋ+ l1θ̇ sin(θ),−l1θ̇ cos(θ)

)
,

~̇rmbeam
=
(
ẋ+

(l1 − l2)
2

θ̇ sin(θ),−(l1 − l2)
2

θ̇ cos(θ)
)
,

~̇R =
(
ẋ− l2θ̇ sin(θ), l2θ̇ cos(θ)

)
.

The squared speeds are

|~̇rm|2 = ẋ2 + l21θ̇
2 + 2l1ẋθ̇ sin(θ) ,

|~̇rmbeam
| = ẋ2 +

(
(l1 − l2)

2

)2

θ̇2 + 2ẋ
(l1 − l2)

2
θ̇ sin(θ) ,

| ~̇R|2 = ẋ2 + l22θ̇
2 − 2ẋl2θ̇ sin(θ) .

The kinetic and potential energies are

T =
1

2
Ibeamθ̇

2 +
1

2
mbeam

(
ẋ2 +

(
(l1 − l2)

2

)2

θ̇2 + 2ẋ
(l1 − l2)

2
θ̇ sin(θ)

)
+

1

2
m
(
ẋ2 + l21θ̇

2 + 2l1ẋθ̇ sin(θ)
)
+

1

2
M
(
ẋ2 + l22θ̇

2 − 2ẋl2θ̇ sin(θ)
)
=

1

2
Iθ̇2 +

1

2
mtotẋ

2 + Aẋθ̇ sin(θ) ,

V = −mgl1 sin(θ)−mbeamg
(l1 − l2)

2
sin(θ) +Mgl2 sin(θ) = V sin(θ) ,

with I and V defined in the previous section, mtot = (m + mb + M) and A =(
(l1−l2)

2
mbeam +ml1 −Ml2

)
. The first term in the kinetic energy expression takes the
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rotation of the beam into account while the remaining terms handle the kinetic energies
of the centres of mass. The Lagrangian is

L = T − V =
1

2
Iθ̇2 +

1

2
mtotẋ

2 + Aẋθ̇ sin(θ)− V sin(θ).

Since x is a cyclic coordinate the conjugate momenta will be conserved and in addition
the energy is conserved. This yields two equations which will be enough to solve for
the velocities. The conjugate momenta and total energy are

px =
∂L

∂ẋ
= mtotẋ+ Aθ̇ sin(θ) = 0 ,

E =
1

2
Iθ̇2 +

1

2
mtotẋ

2 + Aẋθ̇ sin(θ) + V sin(θ) = V sin(θ0) .

The initial conditions are set to ẋ = 0 and θ̇ = 0. By refurnishing the equation for px an
expression for ẋ is obtained,

ẋ = −Aθ̇ sin(θ)
mtot

This expression is plugged in to the expression for the total energy to obtain an expres-
sion for θ̇

V sin(θ0) =
1

2

(
Iθ̇2 +mtot

(
− Aθ̇ sin(θ)

mtot

)2

+ A

(
− Aθ̇ sin(θ)

mtot

)
θ̇ sin θ + V sin(θ)

)
⇐⇒

θ̇ = ±
√

2V

I
(sin(θ0)− sin(θ)) .

During a throw θ̇ will be negative so the plus sign may be dropped. This is the same
angular velocity obtained in the stationary case. ẋ becomes

ẋ =
A
√

2V
I
(sin(θ0)− sin(θ)) sin(θ)

mtot

In order for the siege engine to be useful the counter weight will have to be heavy
in comparison to projectile and beam. Therefore A will be negative. The release of
the projectile will occur at negative θ hence ẋ will be positive at the release of the
projectile. Plugging these expressions in to |~̇rm|will yield a launch speed greater than in
the stationary case. The quotient between the ”wheeled” model speed and the stationary
model is,

|~̇r wheelsm |
|~̇r stationarym |

=

√
ẋ2 + l21θ̇

2 + 2l1ẋθ̇ sin(θ)

l21θ̇
2

=

√
A sin2(θ)(A− 2l1mtot)

l21m
2
tot

+ 1

This would yield an increased launch speed of about 20% for a system with, m = 100
kg, mbeam = 2000 kg, M = 10000 kg, l1 = 8 m and l2 = 4 m.
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2.2.2 Small scale model

A small model of this system was built to help visualise the system (see fig 2). It had a
counter weight of mass M = 0.488 kg, the beam weighted mb = 0.146 and dimensions
l1 = 0.310 m and l2 = 0.265 m. It was able to throw an 0.019 kg steel nut about 1.45
m when it was ”anchored” to remain stationary and 1.55 m when it was allowed to slide
along the surface it was placed upon. The model would move about quite a bit during
the throw if it was not fixed to the surface it was sitting on.

Figure 2: A picture of the small seesaw model

2.3 Hinged counterweight model
This model has a counterweight that is hinged to allow it to swing during the motion.
By examining fig. 3 it is noted that the system is basically a double pendulum. Similar
calculations to the ones performed here are also found in [3, pages 8-9].

2.3.1 Euler-Lagrange equations

In order to find the Lagrangian of this siege engine, the positions of the massesm,mbeam

and M are determined

6
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y

x mbeam
θl1

l2

Pivot

m

φ

l3

M

Figure 3: A schematic of a siege engine with a hinged counterweight. the origin is taken
to be the pivot point.

~rm = l1
(
− cos(θ),− sin(θ)

)
,

~rmbeam
=

(l1 − l2)
2

(
− cos(θ),− sin(θ)

)
, (1)

~R =
(
l2 cos(θ) + l3 sin(φ), l2 sin(θ)− l3 cos(φ)

)
, (2)

where (l1−l2)
2

represents the distance from the origin to the centre of mass of the beam.
The velocities are

~̇rm = l1θ̇
(
sin(θ),− cos(θ)

)
,

~̇rmbeam
=

(l1 − l2)
2

θ̇
(
sin(θ),− cos(θ)

)
, (3)

~̇R =
(
− l2θ̇ sin(θ) + l3φ̇ cos(φ), l2θ̇ cos(θ) + l3φ̇ sin(φ)

)
. (4)

The square of the velocities are

|~̇rm|2 = l21θ̇
2 ,

|~̇rmbeam
|2 =

(
(l1 − l2)

2

)2

θ̇2 , (5)

| ~̇R|2 = l22θ̇
2 + l23θ̇

2 − l2l3θ̇φ̇ sin(θ − φ) . (6)

The kinetic energy becomes

T =
1

2
Ibeamθ̇

2 +
1

2
mbeam

(
l1 − l2

2

)2

θ̇2 +
1

2
ml21θ̇

2 +
1

2
M
(
l22θ̇

2 + l23φ̇
2 − 2l2l3θ̇φ̇ sin(θ − φ)

)
where Ibeam = 1

12
mbeam(l1 + l2)

2. The potential energy is

V = g
(
−ml1 sin(θ)−mbeam

l1 − l2
2

sin(θ) +M
(
l2 sin(θ)− l3 cos(φ)

))
.

7



FYGB08 Daniel Karlsson

In order to obtain the equations of motion the Lagrangian is formed, L = T − V and
then the Euler Lagrange equations are constructed

d

dt

∂L

∂θ̇
=
∂L

∂θ
,

∂L

∂θ̇
=
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̇ −Ml2l3φ̇ sin(θ − φ) ,

d

dt

∂L

∂θ̇
=
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̈ −Ml2l3

(
φ̈ sin(θ − φ)+ (7)

φ̇ cos(θ − φ)(θ̇ − φ̇)
)
,

∂L

∂θ
= −Ml2l3θ̇φ̇ cos(θ − φ) + g

(
ml1 cos(θ) +mbeam

l1 − l2
2

cos(θ)− (8)

Ml2 cos(θ)
)
.

The equation of motion with respect to θ is given when eq. 7 is set equal to eq. 8. The
equation of motion with respect to φ becomes

d

dt

∂L

∂φ̇
=
∂L

∂φ
,

∂L

∂φ̇
=M

(
l23φ̇− l2l3θ̇ sin(θ − φ)

)
,

d

dt

∂L

∂φ̇
=M

(
l23φ̈− l2l3

(
θ̈ sin(θ − φ)− θ̇ cos(θ − φ)(θ̇ − φ̇)

))
, (9)

∂L

∂φ
=Ml2l3θ̇φ̇ cos(θ − φ)−Ml3g sin(φ) . (10)

The equation of motion with respect to φ is obtained when eq. 9 is set equal to 10. These
are the equations of motion of a double pendulum as expected. The equations simplify
to,

0 =
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̈ −Ml2l3

(
φ̈ sin(θ − φ)+

φ̇2 cos(θ − φ)
)
− g
(
ml1 cos(θ) +mbeam

l1 − l2
2

cos(θ)−Ml2 cos(θ)
)
,

0 = l3φ̈− l2
(
θ̈ sin(θ − φ)− θ̇2 cos(θ − φ)

)
+ g sin(φ) .

2.3.2 Numerical solution

The equations of motion of the previous section were solved using MatLab (the code
used can be found in appendix A). The results are shown in fig. 4. The somewhat
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realistic values used when solving the equations of motion were; m = 100 kg, M =
10000 kg, mbeam = 2000 kg l1 = 8 m, l2 = 4 m and l3 = 2 m [1, page 566].

(a) Graphic representation of the angle θ and
θ̇ in the time interval 0-2 seconds

(b) Graphic representation of the angle φ and
φ̇ in the time interval 0-2 seconds

Figure 4: Plots of the numerical solutions

When examining fig. 4 it is noted that at the start of the motion φ decreases so that
the counter weight moves downwards in a more vertical fashion than it would have if it
was fixed. The angular velocity reaches a maximum between 1.4 and 1.5 seconds. The
trajectories given by the numerical solution are very similar to the ones in [1, page 569]
The maximum of θ̇ is |θ̇| ≈ 6.8 rad/s occurring at θ ≈ −1.3 rad (about 74◦). Releasing
the projectile here would lead to a launch speed of about v ≈ 54.4 m/s which is about
20% off the results given in [1, page 570].

2.3.3 Small scale model

A small scale model was built in order to visualise the motion of the trebuchet. It can be
seen in fig. 5. It is noted that the small siege engine in the pictures has wheels, but the
lengths of throws discussed here are for that model without the wheels. Its dimensions
are stated in the previous section, with the addition that l2 is halved and that the new
l2 = l3. During the construction different ”platforms” for the projectile to be placed on
was tested and the length of the throws differed greatly with the choice of ”platform”.
Since things like the firing mechanism are not handled in the mathematical model a
comparison of the small model and the numerical solution is difficult.

The trebuchet was able to throw a steel nut weighing 0.019 kg about 1.55 m. The
time from the start of the motion until the beam was vertical was less than a second.
This model did not have to be anchored to remain stationary during the throw. One final

9
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comment of the small scale model is that the angle of the beam when the projectile is
released is about 80◦ which is similar to the angle of the beam in the numerical solution
of the realistic case.

Figure 5: pictures of the model built for this project

2.4 Hinged counterweight on wheels
This model is basically the previous one with the addition of wheels to let it move
horizontally. Fig. 3 may again be used when writing up the equations of motion with
the addition that lateral motion in the x direction is now allowed.

2.4.1 Euler-Lagrange equations

The origin is taken where the pivot point is before the motion starts. The new position
vectors are

~rm =
(
x− l1 cos(θ),−l1 sin(θ)

)
,

~rmbeam
=
(
x− (l1 − l2)

2
cos(θ),−(l1 − l2)

2
sin(θ)

)
,

~R =
(
x+ l2 cos(θ) + l3 sin(φ), l2 sin(θ)− l3 cos(φ)

)
.

10
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The velocities are

~̇rm =
(
ẋ+ l1θ̇ sin(θ),−l1θ̇ cos(θ)

)
,

~̇rmbeam
=
(
ẋ+

(l1 − l2)
2

θ̇ sin(θ),−(l1 − l2)
2

θ̇ cos(θ)
)
,

~̇R =
(
ẋ− l2θ̇ sin(θ) + l3φ̇ cos(φ), l2θ̇ cos(θ) + l3φ̇ sin(φ)

)
.

The squared velocities are

|~̇rm|2 = ẋ2 + 2l1θ̇ẋ sin(θ) + l21θ̇
2 ,

|~̇rmbeam
|2 = ẋ2 +

(
(l1 − l2)

2

)2

θ̇2 + (l1 − l2)θ̇ẋ sin(θ) ,

| ~̇R|2 = ẋ2 + l22θ̇
2 + l23φ̇

2 + 2l3ẋφ̇ cos(φ)− 2l2ẋθ̇ sin(θ) + 2l2l3θ̇φ̇ sin(φ− θ) .

The kinetic and potential energies are

T =
1

2
Ibeamθ̇

2 +
1

2
m
(
ẋ2 + 2l1θ̇ẋ sin(θ) + l21θ̇

2
)
+

1

2
mbeam

(
ẋ2 +

(
(l1 − l2)

2

)2

θ̇2+

(l1 − l2)θ̇ẋ sin(θ)
)
+

1

2
M
(
ẋ2 + l22θ̇

2 + l23φ̇
2 + 2l3ẋφ̇ cos(φ)− 2l2ẋθ̇ sin(θ) + 2l2l3θ̇φ̇ sin(φ− θ)

)
,

V = −mgl1 sin(θ)−mbeamg
(l1 − l2)

2
sin(θ) +Mg

(
l2 sin(θ)− l3 cos(φ)

)
.

The Lagrangian is L = T − V . It is noted that the x-coordinate is cyclic and hence the
conjugate momenta is conserved. The Euler Lagrange equation with respect to θ is

d

dt

∂L

∂θ̇
=
∂L

∂θ
,

∂L

∂θ̇
=
(
Ibeam +ml21 +mbeam

(
(l1 − l2)

2

)2

+Ml22
)
θ̇ +

(
ml1 +mbeam

l1 − l2
2
−Ml2

)
ẋ sin(θ)+

Ml2l3φ̇ sin(φ− θ) ,
d

dt

∂L

∂θ̇
=
(
Ibeam +ml21 +mbeam

(
(l1 − l2)

2

)2

+Ml22
)
θ̈+(

ml1 +mbeam
l1 − l2

2
−Ml2

)(
ẍ sin(θ) + ẋθ̇ cos(θ)

)
+

Ml2l3
(
φ̈ sin(φ− θ) + φ̇ cos(φ− θ)(φ̇− θ̇)

)
,

∂L

∂θ
=
(
ml1ẋθ̇ +

l1 − l2
2

mbeamθ̇ẋ+Ml2ẋθ̇ +mgl1 +mbeamg
l1 − l2

2
−Mgl2

)
cos(θ)−

Ml2l3θ̇φ̇ cos(φ− θ) .
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The equation of motion with respect to φ becomes

d

dt

∂L

∂φ̇
=
∂L

∂φ
,

∂L

∂φ̇
=Ml23φ̇+Ml3ẋ cos(φ) +Ml2l3θ̇ sin(φ− θ) ,

d

dt

∂L

∂φ̇
=Ml3

(
l3φ̈+ ẍ cos(φ)− ẋφ̇ sin(φ) + l2(θ̈ sin(φ− θ) + θ̇ cos(φ− θ)(φ̇− θ̇))

)
,

∂L

∂φ
= −Ml3ẋφ̇ sin(φ) +Ml2l3θ̇φ̇ cos(φ− θ)−Mgl3 sin(φ) .

Finally the equation of motion with respect to x becomes

d

dt

∂L

∂ẋ
=
∂L

∂x
,

∂L

∂ẋ
=
(
m+mbeam +M

)
ẋ+

(
ml1 +mbeam

l1 − l2
2
−Ml2

)
θ̇ sin(θ) +Ml3φ̇ cos(φ) ,

d

dt

∂L

∂ẋ
=
(
m+mbeam +M

)
ẍ+

(
ml1 +mbeam

l1 − l2
2
−Ml2

)(
θ̈ sin(θ) + θ̇2 cos(θ)

)
+

Ml3
(
φ̈ cos(φ)− φ̇2 sin(φ)

)
,

∂L

∂x
= 0.

The equations of motion simplify to

0 =
(
Ibeam +ml21 +mbeam

(
(l1 − l2)

2

)2

+Ml22
)
θ̈ +

(
ml1 +mbeam

l1 − l2
2
−Ml2

)
ẍ sin(θ)+

Ml2l3
(
φ̈ sin(φ− θ) + φ̇2 cos(φ− θ)

)
−
(
mgl1 +mbeamg

l1 − l2
2
−Mgl2

)
cos(θ) ,

0 = l3φ̈+ ẍ cos(φ) + l2(θ̈ sin(φ− θ)− θ̇2 cos(φ− θ)) + g sin(φ) ,

0 =
(
m+mbeam +M

)
ẍ+

(
ml1 +mbeam

l1 − l2
2
−Ml2

)(
θ̈ sin(θ) + θ̇2 cos(θ)

)
+

Ml3
(
φ̈ cos(φ)− φ̇2 sin(φ)

)
.

2.4.2 Numerical solution

When trying to evaluate this model numerically errors occurred that the author was
unable to correct so no information about the motion was retrieved here. The faulty
MatLab code is shown in appendix B.

12
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2.4.3 Examining the Lagrangian and E-L equations

As stated above, the x-coordinate is cyclic and hence the linear momentum in the x
direction is conserved. If one assumes that the motion is otherwise very similar to the
motion of the stationary case (see the seesaw model where the motion is identical),
conclusions about what happens to the launch speed may be drawn. By examining fig.
4b it is noted that at the counter weight turns in a way to allow it to take trajectory as
close to a vertical fall as possible, but depending on the relation between the lengths l2
and l3 it may not be able to take this trajectory all the way until the projectile is released.
Then it will have to move away from the target of the shot and in order to keep the
linear momentum conserved the frame of the siege engine will have to move forward.
The forward speed of the trebuchet will become larger when the counter weight mass
becomes larger in comparison to the projectile, beam (and frame). This would result in
that the projectile, when launched would have an additional speed relative the ground.
Hence wheels would improve the length of the shots taken. Simulations and a similar
discussion is found at [4] .

2.4.4 Small scale model

The frame of the model is a lot heavier than the beam and counter weight and the
scales are small, because of this it was impossible to note any difference between the
stationary and rolling model. Hence no confirmation of whether wheels improve the
more advanced siege engines could be drawn from this approach.

2.5 The trebuchet
This model is really close to the actual motion of the most effective trebuchets, apart
from the approximations made earlier. In this model the projectile is attached to a sling.
For the first part of the motion the projectile will slide along a trough before it becomes
airborne.

2.5.1 Euler-Lagrange equations

First the position of the projectile is found to be

~rm =
(
− l1 cos(θ) + l4 cos(ψ),−l1 sin(θ)− l4 sin(ψ)

)
,

while the other positions are the same as the ones for the stationary siege engine
with the hinged counter weight and therefore equal to eqs. 1 and 2. The velocity of the
projectile is

13
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y

x mbeam
θl1

l2

Pivot

ψ

l4 m

φ

l3

M

Figure 6: A schematic of the moving parts of a stationary trebuchet. The projectile will
slide along a trough until it lifts off the ground.

~̇rm =
(
l1θ̇ sin(θ)− l4ψ̇ sin(ψ),−l1θ̇ cos(θ)− l4ψ̇ cos(ψ)

)
.

The squared velocity is

|~̇rm|2 = l21θ̇
2 + l24ψ̇

2 + 2l1l4θ̇ψ̇ cos(θ + ψ).

The kinetic and potential energies of this system can be described as

T =
1

2
Ibeamθ̇

2 +
1

2
mbeam

(
l1 − l2

2

)2

θ̇2 +
1

2
m
(
l21θ̇

2 + l24ψ̇
2 + 2l1l4θ̇ψ̇ cos(θ + ψ)

)
+

1

2
M
(
l22θ̇

2 + l23φ̇
2 − 2l2l3θ̇φ̇ sin(θ − φ)

)
,

V = g
(
−m

(
l1 sin(θ) + l4 sin(ψ)

)
−mbeam

l1 − l2
2

sin(θ) +M
(
l2 sin(θ)− l3 cos(φ)

))
.

The Lagrangian is as usual L = T − V . The motion in this model can be split in to two
parts, one where the motion is constrained because the projectile slides without friction
along the trough and one unconstrained part when the projectile is airborne. The first
part of the motion may be solved using Lagrange undetermined multipliers [5, eq. 2.23
page 46]

d

dt

∂L

∂q̇k
− ∂L

∂qk
=

m∑
α=1

λα
∂fα
∂qk

where qk are the generalized coordinates, L is the Lagrangian, λα will represent the
magnitude of the constraint force and fα are the constraint equations. The second part

14
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of the motion may be solved similarly to the previous section with the initial conditions
obtained when the normal force becomes zero. The constraint equation in this case
becomes f = −l1 sin(θ) − l4 sin(ψ) + l1 sin(θ0) + l2 sin(ψ0) = 0 and the equation of
motion with respect to θ is written

d

dt

∂L

∂θ̇
− ∂L

∂θ
= λ

∂f

∂θ
,

∂L

∂θ̇
=
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̇ +ml1l4ψ̇ cos(θ + ψ)−

Ml2l3φ̇ sin(θ − φ) ,
d

dt

∂L

∂θ̇
=
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̈+

ml1l4
(
ψ̈ cos(θ + ψ)− ψ̇ sin(θ + ψ)(θ̇ + ψ̇)

)
−

Ml2l3
(
φ̈ sin(θ − φ) + φ̇ cos(θ − φ)(θ̇ − φ̇)

)
,

∂L

∂θ
= −ml1l4θ̇ψ̇ sin(θ + ψ)−Ml2l3θ̇φ̇ cos(θ − φ) + (ml1 +mbeam

l1 − l2
2
−Ml2)g cos(θ) ,

λ
∂f

∂θ
= −λl1 cos(θ) .

This constitutes the equation of motion with respect to θ. The equation of motion with
respect to φ is

d

dt

∂L

∂φ̇
− ∂L

∂φ
= 0 ,

∂L

∂φ̇
=M

(
l23φ̇− l2l3θ̇ sin(θ − φ)

)
,

d

dt

∂L

∂φ̇
=M

(
l23φ̈− l2l3

(
θ̈ sin(θ − φ)− θ̇ cos(θ − φ)(θ̇ − φ̇)

))
,

∂L

∂φ
=Ml2l3θ̇φ̇ cos(θ − φ)−Ml3g sin(φ) .

15
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The last equation of motion is with respect to ψ

d

dt

∂L

∂ψ̇
− ∂L

∂ψ
= λ

∂f

∂ψ
,

∂L

∂ψ̇
= ml24ψ̇ +ml1l4θ̇ cos(θ + ψ) ,

d

dt

∂L

∂ψ̇
= ml24ψ̈ +ml1l4

(
θ̈ cos(θ + ψ)− θ̇ sin(θ + ψ)(θ̇ + ψ̇)

)
,

∂L

∂ψ
= −ml1l4θ̇ψ̇ sin(θ + ψ) +mgl4 cos(ψ) ,

λ
∂f

∂ψ
= −λl4 cos(ψ) .

The equations of motion are

−λl1 cos(θ) =
(
Ibeam +mbeam

(
l1 − l2

2

)2

+ml21 +Ml22
)
θ̈ +ml1l4

(
ψ̈ cos(θ + ψ)− ψ̇2 sin(θ + ψ)

)
−

Ml2l3
(
φ̈ sin(θ − φ) + φ̇2 cos(θ − φ)

)
−
(
ml1 +mbeam

l1 − l2
2
−Ml2

)
g cos(θ) ,

0 = l3φ̈− l2
(
θ̈ sin(θ − φ)− θ̇2 cos(θ − φ)

)
+ g sin(φ) ,

−λ cos(ψ) = ml4ψ̈ +ml1
(
θ̈ cos(θ + ψ)− θ̇2 sin(θ + ψ)

)
−mg cos(ψ) .

Because of a limited time frame for this project and lacking knowledge of numerical
computation no further analysis will be carried out for this model. A more extensive
analysis of this model is covered in [1, pages 572-574]. This model on wheels would
result in 4 equations of motion and extensive amounts of numerical refurnishing of the
equations in order to find the trajectories.

2.6 Discussion & conclusion
The trebuchet is an interesting machine with a lot of mechanics to it. The focus of this
report was to derive the equations of motion and investigate whether wheels would im-
prove the initial speed of a projectile. The first model investigated was successful in the
sense that the equations of motion were derived and a relation between the initial speeds
of the stationary and moving model was achieved. The seeesaw is one of the simplest
models available, which makes it possible to solve analytically making use of conser-
ved quantities. The fact that the small model built would throw the projectiles further
when allowed to move in the line of fire supports the mathematical model is a good indi-
cator that the conclusion that wheels would increase the range of the trebuchet is correct.

16
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The model with the hinged counter weight proved more difficult to evaluate. Here
there are more degrees of freedom than conserved quantities. Therefore a numerical
approximation of the equations was suitable, but a better understanding of solving dif-
ferential equations with the help of a computer would prove necessary. With the results
of the first model it is still very reasonable to believe the distance of a throw with this
model would increase with a pair of wheels.

The last model considered has yet another degree of freedom making it even more
complicated to solve, therefore the derivation of the equation of motion for the statio-
nary case was as far as the treatment of that model went.

It was interesting to see that the hinged counter weight model was so much more
efficient than the seesaw model that the throwing distances would be equal when the
counter weight masses differed by almost 20%.

Something that would have been good to take into account when formulating the
mathematical models where horizontal motion was allowed was the mass of the frame
that holds the beam, since this would affect the horizontal motion. At least in cases
where the mass of the frame is not negligible compared to the other masses, such as the
small models built and possibly large machines as well.

Before undertaking this project it could have been beneficial to have taken a course
in numerical computation. This would have enabled the comparison of the small scale
model and the mathematical model and also an idea of as to how much better the more
advanced models would be with a pair of wheels.
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A MatLab code without wheels
The differential equations to be solved, y(2) = θ̇ and y(4) = φ̇. this is the first script
written when solving the equations.
function dydt = Treb(t,y,A,C,D,l1,l2,l3,m,M)
g=9.82;

dydt = [y(2); 1./(C−(l2/l3)∗D.∗sin(y(1)−y(3)).2).∗(A.∗cos(y(1))+(y(2).2).∗
D.∗sin(y(1)−y(3)).∗ cos(y(1)−y(3)).∗ (l2/l3)−D.∗ (y(4).2).∗ cos(y(1)−y(3))−
D.∗ sin(y(1)− y(3)).∗ sin(y(3))); y(4); (−g/l3).∗ sin(y(3))+ (((l2/l3)∗ sin(y(1)−
y(3)))./(C − (l2/l3) ∗D. ∗ sin(y(1)− y(3)).2)). ∗ (A. ∗ cos(y(1)) + (y(2).2). ∗D. ∗
sin(y(1) − y(3)). ∗ cos(y(1) − y(3)). ∗ (l2/l3) −D. ∗ (y(4).2). ∗ cos(y(1) − y(3)) −
D. ∗ sin(y(1)− y(3)). ∗ sin(y(3))) + (l2/l3). ∗ (y(2).2). ∗ cos(y(1)− y(3))];
end

Then this script is written
g = 9.82;
l1 = 0.31;
l2 = 0.1;
l3 = 0.15;
m = 0.018;
M = 0.4;
mb = 0.146;
A = g ∗ (m ∗ l1 +mb ∗ (l1− l2)/2−M ∗ l2);
C = (l1 + l2).2/12 ∗mb+mb ∗ ((l1− l2)/2).2 +m ∗ 11.2 +M ∗ l22;
D =M ∗ l2 ∗ l3;
tspan = [0, 10];
y0 = [pi/3, 0, 0, 0];
[t, y] = ode45(@(t, y)Treb(t, y, A, C,D, l1, l2, l3,m,M), tspan, y0);

B MatLab code with wheels
y(2) = ẋ, y(4) = φ̇ and y(6) = θ̇. The first script:
function dydx = hjul(y,l1,l2,l3,m,M,mb,I)
g = 9.82;

dydx = [y(2);−(((4.∗I+4.∗ l1.2.∗m+2.∗ l2.2.∗M+(l1− l2).2.∗mb+2.∗ l2.2.∗
M.∗cos(2.∗(y(5)−y(3)))).∗sin(y(3)).∗((l1.∗(2.∗m+mb)−l2.∗(2.∗M+mb)).∗(g.∗
sin(y(5))− l2.∗y(6).2)−2.∗ l2.∗ l3.∗M.∗sin(y(5)−y(3)).∗y(4).2)−((l1.∗(2.∗m+
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mb)−l2.∗(M+mb)).∗sin(y(5))+l2.∗M.∗sin(y(5)−2.∗y(3))).∗(2.∗g.∗l2.∗(−l1.∗
(2.∗m+mb)+l2.∗(2.∗M+mb)).∗cos(y(5)).∗sin(y(5)−y(3))+g.∗(4.∗I+4.∗l1.2.∗
m+4.∗l2.2.∗M+(l1−l2).2.∗mb).∗sin(y(3))+l2.∗cos(y(5)−y(3)).∗(−(4.∗I+4.∗
l1.2.∗m+4.∗l2.2.∗M+(l1−l2).2.∗mb).∗y(4).2+4.∗l2.∗l3.∗M.∗sin(y(5)−y(3)).∗
y(4).2)))./(−((l1.∗(2.∗m+mb)−l2.∗(M+mb)).∗sin(y(5))+l2.∗M.∗sin(y(5)−2.∗
y(3))).∗((4.∗I+4.∗l1.2.∗m+4.∗l2.2.∗M+(l1−l2).2.∗mb).∗cos(y(3))+2.∗l2.∗(l1.∗
(2.∗m+mb)).∗sin(y(5)).∗sin(y(5)−y(3)))+(4.∗I+4.∗l1.2.∗m+4.∗l2.2.∗M+(l1−
l2).2.∗mb−4.∗l2.2.∗M.∗sin(y(5)−y(3)).2).∗((l1+l2).∗(2.∗m+mb).∗cos(y(3)).∗
sin(y(5))−2.∗l2.∗(m+mb+M).∗cos(y(5)).∗sin(y(3))))); y(4);−((−g.∗(l1+l2).∗
(2.∗m+mb).∗(l1.∗(2.∗m+mb)−l2.∗(2.∗M+mb)).∗sin(2.∗y(5)−y(3))+g.∗(4.∗m.∗
(2.∗I+(l1+l2).∗(l2.∗M+l1.∗(m+2.∗M)))+2.∗l1.∗(l1+l2).∗(3.∗m+M).∗mb+
(l1−l2).∗(l1+l2).∗mb.2+8.∗I.∗(M+mb)).∗sin(y(3))+(−(l1+l2).∗(2.∗m+mb).∗
(4.∗I+4.∗l1.2.∗m+4.∗l2.2.∗M+(l1−l2).2.∗mb).∗cos(y(5)).∗cos(y(3))−2.∗l2.∗(4.∗
m.∗(I+(l1+l2).2.∗M)+(l1+l2).2.∗(m+M).∗mb+4.∗I.∗(M+mb)).∗sin(y(5)).∗
sin(y(3))).∗y(6).2+l3.∗M.∗(2.∗l2.∗(l1+l2).∗(2.∗m+mb).∗sin(2.∗(y(5)−y(3)))+
(4.∗I+(l1+l2).∗(−l2.∗mb+l1.∗(4.∗m+mb))).∗sin(2.∗y(3))).∗y(4).2)./(l3.∗(4.∗
I.∗M+4.∗m.∗(2.∗I+l1.∗l2.∗M+l2.2.∗M+l1.2.∗(m+M))+(8.∗I+l1.2.∗(6.∗m+
M)+l2.2.∗(2.∗m+3.∗M)).∗mb+(l1−l2).2.∗mb.2+(−l2.∗mb+l1.∗(2.∗m+mb)).∗
(l1.∗(2.∗m+mb)−l2.∗(2.∗M+mb)).∗cos(2.∗y(5))+M.∗(−4.∗I−(l1+l2).∗(−l2.∗
mb+ l1.∗ (4.∗m+mb))+2.∗ l2.∗ (l1+ l2).∗ (2.∗m+mb).∗cos(2.∗y(5))).∗cos(2.∗
y(3))+2.∗l2.∗(l1+l2).∗M.∗(2.∗m+mb).∗sin(2.∗y(5)).∗sin(2.∗y(3))))); y(6); (2.∗
g.∗((l1.∗(2.∗m+mb).∗(2.∗m+M+2.∗mb)−l2.∗(2.∗m.∗(M+mb)+mb.∗(3.∗M+
2.∗mb))).∗cos(y(5))−(l1+ l2).∗M.∗(2.∗m+mb).∗cos(y(5)−2.∗y(3)))+((−l2.∗
mb+ l1(2.∗m+mb)).∗(l1.∗(2.∗m+mb)− l2.∗(2.∗M+mb)).∗sin(2.∗y(5))+2.∗
l2.∗(l1+l2).∗M.∗(2.∗m+mb).∗sin(2.∗(y(5)−y(3)))).∗y(6).2−4.∗l3.∗M(2.∗l2.∗
(m+mb).∗cos(y(5)).∗cos(y(3))+(l1+l2).∗(2.∗m+mb).∗sin(y(5)).∗sin(y(3))).∗
y(4).2)./(4.∗I.∗M+4.∗m.∗(2.∗I+l1.∗l2.∗M+l2.2.∗M+l1.2.∗(m+M))+(8.∗I+
l1.2.∗(6.∗m+M)+l2.2.∗(2.∗m+3.∗M)).∗mb+(l1−l2).2.∗mb.2+(−l2.∗mb+l1.∗(2.∗
m+mb)).∗(l1.∗(2.∗m+mb)−l2.∗(2.∗M+mb)).∗cos(2.∗y(5))+M.∗(−4.∗I−(l1+
l2).∗(−l2.∗mb+l1.∗(4.∗m+mb))+2.∗l2.∗(l1+l2).∗(2.∗m+mb).∗cos(2.∗y(5))).∗
cos(2.∗y(3))+2.∗ l2.∗(l1+ l2).∗M.∗(2.∗m+mb).∗sin(2.∗y(5)).∗sin(2.∗y(3)))];

end

Then the following script was written

g = 9.82;
l1 = 8;
l2 = 4;
l3 = 2;
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m = 100;
M = 10000;
mb = 2000;
I = mb ∗ (l1 + l2).2/12;

tspan = [0, 10];
y0 = [0, 0, 0, 0, pi/3, 0];

[t, y] = ode45(@(t, y)hjul(y, l1, l2, l3,m,M,mb, I), tspan, y0)

plot(t,y(:,1),’o’)
hold on
plot(t,y(:,2),’o’)
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