
Accretion Disks: An Overview

Author: Simon Kronberg
Supervisor: Jürgen Fuchs

FYGB08 - Analytisk Mekanik
Institutionen för Ingenjörs-

vetenskap och Fysik

Abstract: This report is intended as an overview and introduction to the formation and properties of
accretion disks. The current theoretical framework surrounding the formation of stars is �rst presented
followed by the speci�cs relating to disk formation and the structure of thin disks. This is superseded
by a brief discussion of the evolution of accretion disks and �nally a moderately detailed overview of

angular momentum transport throughout the disk.
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I. Introduction

The common consensus among scientists for the
origin of stars is that they form from molecular
clouds in a process which may be described thusly:
The originally stable cloud becomes unstable due
to any number of external factors which forces it
to collapse under its own gravitational attraction.
This collapse gives birth to a class 0 object (a young
stellar object) which is a protostar that rapidly ac-
cretes matter from the surrounding environment.
This accreted matter partly adds to the growing
protostar but also forms an accretion disk. Given
time this will result in a class I object which is
simply a protostar mainly accreting matter from
its disk and, critically, surrounded by a gas enve-
lope which is less massive than the protostar it-
self. This envelope will eventually get dissipated
through jets, winds and accretion, leading to a class
II object, i.e. a star surrounded by an accretion disk.
Continuing this process of dissipation, this time in
the form of accretion onto the star, formation of
protoplanets, photoevaporation, or other dissipa-
tion methods, the star eventually turns into a star
with a debris disk, at which time the accretion stops
and we have a class III object.

According to Alecian [1], the protostellar (class
0 and I) phase lasts about 105 − 106 years during
which the di�erence between low- and high-mass
stars is thought to be negligible as it is believed that
both high- and low-mass stars form from similar,
low-mass, protostars with the di�erence being the
amount of mass they eventually accrete. During
the pre-main sequence phase (class II and III), the
star radiates in the visible bands, whereas in the
protostellar phase the central object is so obscured
that it mainly radiates in the submillimetric to mid-
infrared spectrum.

To make further discussions more convenient,
we may want to use a Hertzsprung-Russel (HR) di-
agram (Fig. 1), which is a plot of the stellar lumi-
nosity as a function of the e�ective temperature.
When the star �rst emerges from the protostellar
phase, it is present on the birthline. It then fol-
lows a track suitable to its mass until it reaches the
zero-age main-sequence (ZAMS) at which point it
starts its longest phase, namely the main-sequence
(MS). The time until a star reaches the ZAMS varies

widely depending on its mass, according to Alecian
[1] it may take as long as ∼ 100 Myr down to ∼ 0.15
Myr for stars with masses of 1 M� and 15 M� , re-
spectively, where M� is the mass of the sun.

Figure 1: PMS theoretical evolutionary tracks
computed by Behrend and Maeder [2] and plot-
ted in a Hertzsprung-Russel (HR) diagram. The
tracks start on the birthline and end on the Zero-
Age Main-Sequence (ZAMS). The transport of en-
ergy inside the star (radiative or convective or both)
is indicated with di�erent broken lines. The zones
surrounded with blue (brown) line represent the re-
gion where the Herbig Ae/Be (T Tauri) stars are sit-
uated

(
�gure from [2] and caption from [1]

)
.

The familiar energy radiation from the nuclear fu-
sion of hydrogen into helium in the core of the star
will not start until the end of the pre-MS phase.
Thus the energy radiated during the pre-MS phase
is due to gravitational contraction. An interesting
property of very massive stars (> 20 M�) is that
they never undergo a pre-MS phase and start burn-
ing hydrogen in its core at the birthline.

II. Disk Formation

As the molecular cloud around a central protostar
contracts, the material accreted onto the protostar
makes it grow in a spherically symmetrical fashion.
Due to the presence of angular momentum and the
action of gravitational and frictional forces, a disk
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will form around the protostar. This is most easily
understood using a minimisation of energy argu-
ment, namely that in the presence of rotation the
orbit of least energy is circular. There is also some-
thing known as an accretion shock: due to the in-
coming �uid elements from the contracting molec-
ular cloud will collide with matter coming from the
other side. The situation is depicted in Fig. 2. Ac-
cording to [3], an e�cient dissipation of the heat
from the impact is su�cient to form a thin disk
structure.

Figure 2: Schematic view of disk formation during
the collapse of a rotating spherical cloud (adapted
from [3]).

Because the disk is supported mainly by its rota-
tion, but also by the gas pressure gradient, we may
approximate the orbital velocity as that of a Keple-
rian orbit, thus

vϕ = ΩKr =

√
GM?
r
, (1)

where ΩK is the Kepler frequency

ΩK :=
√
GM?
r 3
. (2)

The vertical components of the velocity of the in-
falling material will get completely dissipated, leav-
ing only the parallel component vr , see Fig. 2. This
velocity is not necessarily equal to the Keplerian or-
bital velocity at the point of infalling, resulting in
angular momentum transport as well as mass trans-
port. This continues until a nearly Keplerian orbit
has been established.

III. Thin Disks: Structure

Consider a thin disk, i.e. cool and nearly Keple-
rian, which is axisymmetric. We want to study
the motion of an annulus of the disk, i.e. a ring
with a non-zero height. This will be greatly simpli-
�ed using a vertically integrated form of the equa-
tions, i.e. a surface density Σ instead of a density
ρ. Note that matter may �ow through our annu-
lus with a speed vr . Clearly cylindrical coordinates
(r ,ϕ, z) are preferable here due to the symmetry
of the problem. Thus we de�ne a surface density,
which is assumed to depend on r and t :

Σ(r , t) :=
ż ∞

−∞
ρ(r , z)dz.

Recall the continuity equation for mass (and the
fact that mass �ows through our annulus along r
with speed vr ):

∂m

∂t
+
∂

∂r
(mvr ) = 0 ⇔ ∂

∂t
(rρ) + ∂

∂r
(rρvr ).

This leads to the conservation of mass (continuity)
equation

r
∂Σ

∂t
+
∂

∂r
(rΣvr ) = 0, (3)

by simply integrating the continuity equation over
z. Note that r is a constant in time. Due to the ax-
isymmetrical nature of the disk, we see that the ra-
dial equation of motion is simply (e.g. [4])

v2
ϕ =

GM?
r
.

The ϕ-equation of motion may be expressed as [4]
∂vϕ

∂t
+vr
∂vϕ

∂r
+
vrvϕ

r
= Fϕ ,

where Fϕ is the azimuthal component of the vis-
cous force. If one were to integrate this over z, one
would get (according to [3])

r
∂

∂t

(
r 2ΩΣ

)
+
∂

∂r

(
r 2Ω · rΣvr

)
=

1
2π
∂G

∂r
, (4)

where Ω =
vϕ
r and the term on the right hand side

arises from the viscous torques in the disk. We
would like to express the angular momentum of a
thin annulus of the disk.
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This is done in [3] and it is found to be 2πr · ∆r ·
Σr 2 · Ω, where ∆r is the width of the annulus.

Recall that torque is de�ned as the product of
a force F and the distance from the mass centre r ,
thus

G :=
���®r × ®F��� = rF sin(ϑ ),

where ϑ is the angle between ®F and ®r. We need
to apply the torque equation to each annulus of the
disk as it does not rotate as a rigid body. Neighbour-
ing annuli will exert forces onto each other propor-
tional to the orbital velocity, or the orbital velocity
gradient dΩ

dr . This force is known as shear (or vis-
cous) force and is de�ned as

A := r
dΩ
dr
, where

dΩ
dr

is called ’shear’.

Something which will be of considerable interest
later may now be noted, namely that the total
torque from the annulus is

G = 2πr · νΣr dΩ
dr
· r = 2πr 3νΣ

dΩ
dr
, (5)

where ν is the kinematic viscosity. The �rst expres-
sion is written thus to show that it is the product of
the circumference, the viscous force per unit length
and the lever r . Using this we may rewrite Eq. (4)
as

∂

∂t

(
r 2ΩΣ

)
+
1
r

∂

∂r

(
r 2Ω · rΣvr

)
=

1
r

∂

∂r

(
νΣr 3

dΩ
dr

)
. (6)

Consider the individual terms on the left hand side,

∂

∂t

(
r 2ΩΣ

)
= rΩ · r ∂Σ

∂t
,

1
r

∂

∂r

(
r 3ΩΣvr

)
= rΩ ·

(
3Σvr + r

∂Σ

∂r
vr + rΣ

∂cr
∂r

)
,

where Ω is assumed to be time-independent. If we
return to the continuity equation, Eq. (3), and eval-
uate the second term, we get

∂

∂r
(rΣvr ) = Σvr + r

∂Σ

∂r
vr + rΣ

∂vr
∂r
.

The left hand side of Eq. (6) may now be written as

rΩ ·
(
r
∂Σ

∂t
+
∂

∂r
(rΣvr )

)
+ Σvr ·

(
2rΩ + r 2

∂Ω

∂r

)
.

Here the �rst term will vanish, see Eq. (3), and the
second term is recognised as Σvr

∂
∂r

(
r 2Ω

)
, by the

product rule for derivatives. Finally Eq. (6) may be
written as

Σvr
∂

∂r

(
r 2Ω

)
=

1
r

∂

∂r

(
νΣr 3

dΩ
dr

)
.

Solving this for the radial speed vr yields

vr =

1
r
∂
∂r

(
νΣr 3 dΩdr

)
Σ ∂∂r (r 2Ω)

.

If we assume that Ω is the Kepler frequency ΩK ,
de�ned in Eq. (2), we may evaluate this expression:

1
r

∂

∂r

(
νΣr 3

dΩ
dr

)
= −3

√
GM?
2r

∂

∂r

(
νΣ
√
r
)
,

Σ
∂

∂r

(
r 2Ω

)
=

√
GM?
2
· 1
√
r
,

vr = −
3

Σ
√
r

∂

∂r

(
νΣ
√
r
)
.

Insertion into the continuity equation, Eq. (3),
yields

∂Σ

∂t
=

3
r

∂

∂r

[√
r
∂

∂r

(
νΣ
√
r
)]
. (7)

A. Steady Thin Disks

A steady structure is one which remains unchanged
in time. This means that both radial and angu-
lar momentum is conserved and it is assumed that
the vertical component of gravity from the star will
perfectly cancel the vertical gas pressure gradient.
This is equivalent to saying that the system is in
vertical hydrostatic equilibrium.

Consider a disk annulus at a distance r from the
star. Matter can still �ow through the annulus in
radial direction with the velocity vr . According to
[3], we may write the radial momentum conserva-
tion equation for this steady-�ow as

vr
∂vr
∂r
−
v2
ϕ

r
+

1
ρдas

dP
dr
+
GM?
r 2
= 0,

where the four terms arise from radial mass �ow,
centrifugal force, gas pressure, and gravity, respec-
tively.



5

Recall the conservation of angular momentum
equation, Eq. (6). The time derivative will clearly
vanish (steady state), resulting in

∂

∂r

(
r 3ΩΣvr

)
=
∂

∂r

(
νΣr 3

dΩ
dr

)
.

Integration yields

r 3ΩΣvr +C = νΣr
3dΩ
dr
.

Because we would like to arrive at a very speci�c
expression, we will now rewrite this expression as
well as include factor of 1

2π into the integration con-
stant,

νΣ
dΩ
dr
= ΣvrΩ +

C̃

2πr 3
. (8)

Recall that dΩ
dr is called the shear. If we evaluate the

expression above at a point where this vanishes, we
get

C̃ = −2πr 3ΣvrΩ = −(2πrΣvr ) · r 2Ω = ÛMr 2Ω, (9)

where the mass �ow per unit time is de�ned as
ÛM := −2πrΣvr . Note that the reason this is neg-

ative is because the radial velocity is inwards, and
by the cylindrical coordinates convention this re-
sults in a negative sign.

To �nd a place where the shear vanishes, let us
assume that the disk extends all the way down to
the star. Then the shear would clearly vanish at the
radius of the star R?. At that radius

C̃ = ÛMR2
?Ω = ÛM

√
GM?R?, (10)

where again Ω = ΩK has been assumed. We may
hence be inclined to suggest a physical interpreta-
tion of this integration constant, namely the in�ux
of angular momentum through the disk.

We would now like to express the surface den-
sity using this new constant. To do this, we note
that from Eq. (9), we may express the radial veloc-
ity as

vr = −
ÛM

2πrΣ
.

Inserting this into Eq. (8) and solving for Σ yields

Σ = −
ÛMΩ

2πrν dΩ
dr
+

C̃

2πr 3ν dΩ
dr
.

Using the expression for C̃ in Eq. (10) under the as-
sumption that Ω = ΩK yields the �nal expression

Σ =
ÛM

3πν

(
1 −

√
R?
r

)
, for r � R?. (11)

B. Vertical Disk Structure

Recall that steady disks require a vertical hydro-
static equilibrium. Mathematically this may be ex-
pressed as [3]:

1
ρдas

∂P

∂z
=
∂

∂z

(
GM?√
r 2 + z2

)
. (12)

In order to get an expression for the vertical density
structure, we �rst need to de�ne some quantities.
The gas sound speed cs is de�ned as

c2s :=
∂P

∂ρдas
, (13)

where P is the gas pressure and ρдas is the gas den-
sity. For an ideal gas (e.g. [3]),

cs :=

√
kTд

µmp
, (14)

where k is the Boltzmann constant, Tд is the gas
temperature, µ is the mean molecular weight of the
gas andmp is the proton mass.

If we perform the derivative on the right hand
side of Eq. (12), we get

1
ρдas

∂P

∂z
= − GM?

(r 2 + z2)3/2
z ≈ −GM?

r 3
z, for r � z.

Note that the condition r � z is equivalent to the
statement ”thin disks”.

We may now rewrite Eq. (12) as (noting that
Ω2
K =

GM?

r 3
and that, from Eq. (13), P = c2s ρдas )

1
ρдas

∂(c2s ρдas)
∂z

= −Ω2
Kz.

In order to rewrite this further, we require that the
disk be vertically isothermal (i.e. ∂T∂z = 0, since that
clearly implies that dcs

dz = 0, c.f. Eq. (14)), thus

1
ρдas

∂ρдas

∂z
= −

Ω2
K

c2s
z.
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The solution to this di�erential equation is readily
found to be

ρдas(r , z) = ρc(r )e−z
2/2H 2

дas ,

where

Hдas :=
cs
ΩK
. (15)

Hдas is known as the gas pressure scale height and
it is de�ned as ”the increase in altitude for which
the atmospheric pressure decreases by a factor of
e” [5]. ρc(r ) is the density at the midplane and Hдas

is also evaluated there, i.e. Tд = Tc in Eq. (14).

C. Radial Disk Structure

As we will see in a later section (speci�cally Sect.
V.B) after a more rigorous treatment of viscosity,
we may write the kinematic viscosity as

ν = αcsh,

in what is known as α-parametrisation and was
�rst introduced by Shakura and Sunyaev in 1973 as
”a way of parametrising our ignorance of the angu-
lar momentum transport process” [4]. In the above
equation, h ≡ Hдas and cs is the gas speed of sound
as before.

Using this new relation together with Eq. (15)
in Eq. (11) yields

Σ =
ÛMΩ

3παc2s

(
1 −

√
R?
r

)
,

where we can now use Ω = ΩK and cs =
√
kTc/µmp

as well as the condition that r � R?, meaning that√
R?/r → 0, to write

Σ =
µmp
√
GM?

3πk
ÛM

αTcr 3/2
, for r � R?.

An interesting thing to note, which also leads us
nicely into the next section, is that is that we have
assumed the temperature of the midsection of the
disk to follow a simple power-law pro�le, i.e. Tc ∝
r−q , then the surface density Σ ∝ rq−3/2, i.e. also
a simple power-law of radius. Let us now examine
whether this is a sound assumption.

D. Temperature Pro�le of Accretion Disk

To proceed, we must again make some ”new” de�-
nitions, this time for the viscous stress tensor T.

From experiments, we know that

Tvisc approximately ∝ ®∇ ®v,

where ®v is the velocity of the �ow. In words: ”the
magnitude of the shear stress in viscous �ows is of-
ten proportional to the symmetric components of
the velocity gradient” [6].

Explicitly,

Tvisc = −ξθ®g − 2η®σ ,

where there is no dependence on ®r because (intu-
itively) there would be no force if the �uid is sim-
ply rotating, i.e. if vr = 0. The �rst coe�cient, ξ
is called the bulk viscosity and it is often neglected
for astrophysical �ows. The second coe�cient, η
is sometimes called the shear viscosity and this is
indeed the one that we will be using later. To get
tot his point we assumed the viscous strain propor-
tional to the gradient of the velocity, this is only
true for ’Newtonian’ �uids.

In order to compute anything, we �rst need to
make some assumptions. Recall that the shear A =
r dΩdr and that the generated heat comes from the dif-
ference in the orbital velocity at di�erent radii from
the star. Thus the only component of the velocity
of interest for our present discussion is the gradient
of the tangential velocity component in the radial
direction! Thus we expect

Tvisc,rϕ = −νΣr
dΩ
dr
,

where the negative sign comes from the conven-
tions surrounding the radial component of cylin-
drical coordinates.

To get the energy dissipated per unit time, and
per unit surface area we take the viscous stress
times the viscous strain, where the viscous strain
is simply A. Thus

ÛE = νΣr 2
(
dΩ
dr

)2
,

where the change of sign simply comes from the
fact that we want positive energy dissipation in the
disk (i.e. a purely physical argument).
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Making the assumption that Ω = ΩK ⇒ dΩK
dr =

−3
2ΩK yields

ÛE = 9
4
νΣΩ2

K .

We have yet to consider one aspect though, the
3D nature of our disk, i.e. it radiates (presumably)
equally well in positive z-direction as in the nega-
tive one. Thus we must divide our expression by 2
to get the correct energy dissipation per unit area
and unit time,

ÛE = 9
8
νΣΩ2

K .

Recall Eq. (11), from which we immediately see that
ν =

ÛM
3πΣ since r � R?. Insertion into this equation

yields
ÛE = 3

8π
ÛMΩ2

K , when r � R?.

Also note that, under the same assumptions and
from Eq. (11), the mass accretion rate ÛM = 3πνΣ.

Assuming the disk radiates like a black-body,
we may use the Stefan-Boltzmann law for black-
body radiation ÛE = σT 4

disk, where σ is the Stefan-
Boltzmann constant. This yields the temperature
pro�le

Tdisk =

(
3

8πσ
ÛMΩ2

K

)1/4
,

i.e. a r−3/4 pro�le.

IV. Disk Evolution

Recall Eq. (7), repeated here for convenience:

∂Σ

∂t
=

3
r

∂

∂r

[√
r
∂

∂r

(
νΣ
√
r
)]
. (7)

This describes the temporal evolution (i.e. the evo-
lution through time) of the surface density of the
disk and is identi�ed as a di�usion equation

∂ f

∂t
= D
∂2 f

∂x2
,

with a di�usion constant D. As is seen in Fig. 3, vis-
cous forces disperse the matter which is originally
located at a distance r0 from the centre.

Figure 3: The viscous evolution of a ring of mat-
ter of mass m. The surface density Σ is shown as
a function of the dimensionless radius x = r/r0,
where r0 is the initial radius of the ring, and the
dimensionless time τ = 12νt/r 20 , where ν is the vis-
cosity (caption and �gure from [7]).

At this initial condition t = τ = 0 and r = r0, i.e. all
of the mass m is located at a distance r = r0 from
the central star. Thus the surface density is

Σ(r , t = 0) = m

2πr0
δ (r − r0),

where δ (r−r0) is the Dirac delta function. As is seen
in the �gure, with time most of the mass will move
inward and accrete onto the star whilst a smaller
portion of it will move outward (viscous spreading
of the disk) taking along the angular momentum.

V. Angular Momentum Transport

So far we have mentioned the transport of angu-
lar momentum, but we have neglected to explain
its necessity. According to [3] the speci�c angu-
lar momentum, or the angular momentum per unit
mass, for the case of a disk with mass 1 M� with
a size of 10 AU is 3 · 1053cm2/s, whilst a star with
the same mass rotating at break-up velocity has a
speci�c angular momentum of 6 · 1051cm2/s. This
shows the need for a this mechanism.

Recall that angular momentum is conserved in
our system, meaning such a process is viable. The
processes most likely to produce such a mechanism
are ”a torque from the external medium (e.g. mag-
netic �elds), viscosity inside the disk transporting
angular momentum to the outer disk, disk winds
taking angular momentum away” [3].
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Let us assume for a moment that the disk rotates
with Keplerian speed and consider but two parti-
cles on the disk with massesm1 andm2 at a distance
r1 and r2 from the centre of the star with mass M?.
Then their energy and angular momentum may be
expressed as

E = T +V =
2∑

i=1

1
2
miv

2
ϕ,i −

2∑
i=1

GM?mi

ri

= −GM?
2

(
m1

r1
+
m2

r2

)
,

L =
2∑

i=1
mivϕ,iri =

√
GM?

(
m1
√
r1 +m2

√
r2

)
,

where Eq. (1) has been used in the last steps. The
conservation of angular momentum tells is that
a small change in orbit for one of these masses
must result in a corresponding change for the other.
Mathematically this may expressed as

∂L

∂r1
=

√
GM?m1

1
2√r1

,

∆L1 = ∆r1
∂L

∂r1
=

√
GM?m1

∆r1

2√r1
,

∆L1 = −∆L2 ⇔ m1
∆r1√
r1
= −m2

∆r2√
r2
.

Note that this clearly also applies to two neighbour-
ing annuli in the disk.

For this type of behaviour, we require a cou-
pling between the particles (or rings of material).
Such a coupling may be attributed to ”small tur-
bulent random motions” because di�usion plays a
role in radial transportation, not only inward but
also outward. We may also be tempted to con-
sider the previously discussed di�erence in rotation
speed (or shear), but since we are dealing with a gas
the turbulent motions would lead to a radial mixing
of material and thus cause the desired coupling be-
tween the annuli within the disk.

A. Turbulent Viscosity

According to [3] there is a simple approximation to
the molecular viscosity, namely

νm ≈ λcs , where λ :=
1

nσm
is the mean free path of the molecules.

It is de�ned as the inverse of the product between
the gas particle density n and the collisional cross
section σm between the molecules. The quantity
cs is of course the gas sound speed, de�ned in Eq.
(14). If we compute this numerically, with cs =
5 · 104 cm/s, n = 1012/cm3 and σm = 2 · 10−15 cm2,
we obtain

νm =
cs
nσm

= 2.5 · 107 cm2/s.

The viscous timescale may be expressed as (e.g. [8])
tν = r

2/νm. Thus

tν =
r 2

νm

����
r=10 AU

≈ 3 · 1013 years,

when evaluated at a distance r = 10 AU from
the central star. In view of the fact that age of
the universe is merely of the order 1010 years, we
may safely rule out molecular viscosity as the main
source of the turbulent motions.

To gain some more insight into the nature of
these disks, recall the Reynolds number Re, which
is the ratio of inertial forces to viscous forces, i.e.
the ratio between the resistance to a change in mo-
tion and the ”cohesiveness” of the gas. It is useful to
de�ning whether the �ow is laminar or turbulent,
the details of which are beyond the scope of this
text. Su�ce it to say we consider a �ow to be tur-
bulent when the Reynolds number is above∼ 5·103.
Mathematically the Reynolds number is de�ned as
(e.g. [9])

Re =
ρvL

µ
,

where ρ is the density of the �uid, v is the charac-
teristic velocity of the �uid, L is the characteristic
dimension, and µ is the dynamic viscosity of the
�uid. For our purposes, we may estimate it as [3]

Re =
VL

νm
,

where V is the characteristic velocity. Thus V =
cs = 0.5 km/s at 10 AU and L = h = 0.05r =
0.5 AU, where h is the scale height of the gas in the
disk. By direct computation, we get that Re ≈ 1010,
i.e. completely turbulent.
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B. Shakura-Sunyaev Viscosity

As we have seen, the molecular viscosity is not
nearly su�cient in providing the amount of turbu-
lence we require. Thus we turn our attention to
other possible mechanisms. Let us �rst examine the
work done by Shakura & Sunyaev in 1973, where
they parametrised the viscosity without identify-
ing its source. This would then let us compare the
viscosities of di�erent disks under di�erent condi-
tions. This process of parametrisation is also called
’α- parametrisation’, for reasons which will become
apparent presently.

If we use the vertical scale height h as a repre-
sentative scale and we use the gas sound speed cs as
the characteristic velocity of the turbulent motions
in the disk, we may write the viscosity ν as [3]

ν = αcsh.

Using the same de�nitions of the viscous time scale
as before, i.e.

tν =
r 2

ν
=

r 2

αcsh
=

(
h

r

)−2
· 1
αΩ
,

where the de�nition of Hдas = h, i.e. Eq. (15) has
been used in the �nal step.

Following the estimations made in [3], i.e. the
disk is very thin and thus h/r ∼ 0.05 as well as the
timescale being 1 Myr at a distance of 50 AU, yields
an α of ∼ 0.02, which �ts well with observationally
determined values.

C. Magneto-Rotational Instabilities

Balbus & Hawley (1998) propose a model in which
the presence of magnetic �elds produces a cou-
pling between di�erent annuli within the disk. This
interaction may be viewed as a weak spring, the
schematic view of which is available in Fig. 4.

A requirement for the instability of such a mag-
netised disk is that the orbital velocity decreases
with radius, i.e.

dΩ
dr
< 0.

For a Keplerian disk, this is clearly valid as Ω = ΩK ,
see Eq. (2) for the de�nition of which.

Figure 4: Two masses in orbit connected by a weak
spring. The spring exerts a tension forceT resulting
in a transfer of angular momentum from the inner
massmi to the outer massmo . If the spring is weak,
the transfer results in an instability as mi loses an-
gular momentum, drops through more rapidly ro-
tating inner orbits, and moves further ahead. The
outer mass mo gains angular momentum, moves
through slower outer orbits, and drops further be-
hind. The spring tension increases and the process
runs away, i.e. becomes unstable due to its acceler-
ating pace (�gure and caption (edited) from Balbus
& Howley [10]).

This is not a su�cient prerequisite, however. The
disk also needs to be ionised since electrically neu-
tral gas does not interact well with the magnetic
�eld lines. The critical ionization degree is exam-
ined by Sano & Stone (2002) and they found it to be
ne/ntot ∼ 10−12 [11].

D. Dead Zones

Dead zones are a result of the local degree of ionisa-
tion dropping below the critical one. The existence
of these dead zones is vital to planetary formation
as the viscosity drops inside a dead zone, meaning
material �owing from larger radii will accumulate
there. The details of planetary formation are regret-
tably outside of the scope of this text but su�ce it
to say this is not the only mechanism driving the
formation of planets.
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