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Abstract

In this project we study the basics of rocket propulsion and rocket

motion in the vicinity of the Earth. Furthermore we will compare di�erent

designs of rockets. The conclusions that we reach are not su�cient for a

realistic description and applications.
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1 Introduction

Newton's third law of motion dictates that for every action there is an equal
and opposite reaction. This can work as a way to create motion for a system
through acting on surroundings of the system. This, however, does does not
work when the system is isolated, i.e. when there is no action that can be
caused on the surrounding. To solve this one can have a system that ejects part
of its own mass to get the reacting force, though the system as a whole will
still be isolated. This way of achieving motion is called rocket propulsion and
is used in many areas, from warfare to research. [1, 2]

The purpose of this paper is to describe the basics of rocket propulsion and
motion in the vicinity of the Earth.

2 Isolated system

The analysis that follows will be similar to that presented in [3]. Consider an
object that's travelling without external forces acting on it in one dimension.
Let's assume an inertial observer and consider the observed object to be say,
a rocket. Then consider the system composed of the rocket together with its
propellant and exhaust product. Since no external forces are considered, the
linear momentum of the system must be conserved. If one then considers two
instances of time t and t+ dt, where dt is an in�nitesimal time period, one then
has

Mv = −dM U + (M + dM)(v + dv) (1)

where M is the mass of the rocket at time t, v is the velocity of the rocket
at time t, dM is the change of mass of the rocket over the time dt, dv is the
change of velocity of the rocket over the time dt, and U is the velocity of the
exhaust product (relative to the inertial frame, not the rocket). In an attempt
to simplify this, one can introduce the relative velocity between the rocket and
the exhaust product. This relationship is seen as

vrel = (v + dv)− U. (2)

If one then uses the relationship in equation (2) to replace U in equation (1)
one gets

Mv = −dM (v + dv − vrel) +Mv +M dv + dM v + dM dv. (3)

Which can be reduced to

− dM vrel = M dv. (4)

Furthermore, division with dt results in

− dM

dt
vrel = M

dv

dt
. (5)
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Here dM
dt is the rate of mass loss for the rocket. It can be denoted as −R where

R is a positive number. Obviously dv
dt is the acceleration (a) of the rocket. One

then has
Rvrel = Ma. (6)

So on the right side is the mass times the acceleration while on the left side is
the rate of mass change times the velocity that the mass is being ejected with.
The left side is called thrust. If one would want to know what is the maximum
velocity one can achieve, it's simpler to go back to equation (4) and divide both
sides with M and then integrate. It's clear then that one gets

v2 − v1 = vrel ln
M1

M2
. (7)

Just from this equation the possible advantages of a multistage rocket becomes
clear. For a rocket with n stages but with vrel unchanged for each stage, the
equation becomes

vn − v0 = vrel

n∑
i=1

ln
Mi,initial

Mi,final
(8)

where the di�erence between Mi,initial and Mi,final is the fuel mass and the
di�erence betweenMi,final andMi+1,initial is the structural mass (i.e. container,
engine, etc) of the ith stage. This is then only e�cient when

ln
M1,initial

Mn,final
<

n∑
i=1

ln
Mi,initial

Mi,final
. (9)

For a single stage rocket, one can express the mass at any given time as M(t) =
Minitial − Rt, the velocity for any given time, given that R is constant, can be
expressed as

v = v0 + ln

(
Minitial

Minitial −Rt

)
(10)

3 External forces

In the previous section a system with no external forces was considered. While
it can be interesting on its own, it can also be expanded upon to regard other
situations. To do this one goes back to equation (1) which states that the
di�erence in momentum over a in�nitesimal time period is zero. The di�erence
in momentum will now be considered to be a non-zero amount. So equation (1)
will then be

dP = −Mv − dM U + (M + dM)(v + dv). (11)

By using the relationship in equation (2) to replace U one has

dP = dM vrel +M dv. (12)
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Then by dividing with the in�nitesimal time dt one has

dP

dt
=
dM

dt
vrel +M

dv

dt
(13)

Where dP
dt is the total external force acting on the system. Then one has

Fext = −Rvrel +Ma, (14)

so
Ma = Rvrel + Fext. (15)

The velocity can be found by rewriting equation (13) with dP
dt = Fext such that

dv = −vrel
dM
dt

M
dt+

Fext
M

dt. (16)

If one as before assumes that R is constant, and that the external forces over
mass Fext

M are also constant, then integration on both sides yields

v = v0 + vrel ln

(
M0

M0 −Rt

)
+
Fext
M

t (17)

where M0 is the mass of the rocket at time t0

3.1 Gravity

One of the possible external forces that one may take into account when dealing
with rocket motion is gravity. When doing this one may want to consider a
simpler form than Newton's law of gravitation [4]

F = G
m1m2

r2
(18)

where F is the force, m1 and m2 are the masses for the two respective objects
and r is the distance between the centre of mass of the two objects. For the
case of motion in the vicinity of the Earth surface, denoting by Re the average
Earth radius, one can rewrite equation (18) as

F = G
m

(Re + h)2
M (19)

where m is the mass of the earth, Re is the radius of the earth, h is the hight of
the object above the earth and M is the mass of the object. This can now be
compared to the force of gravity at sea level [4]

F = Mg (20)

where g = GM
R2 ≈ 9.84 m

s2 . So the question is can one use equation (20) when
accounting for gravity or does one need to consider the height of the rocket? A
few sample heights were tested as seen in table 1.
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Table 1: Table over di�erence between equation (20) and (18) for di�erent
heights for a given mass

height (km) ∆Force(%)
1 0.03
30 0.94
120 3.66
354 10.26

What one can see from the table is how much g in equation (20) would
change over a distance. It does not give a de�nite answer concerning if one can
neglect the height or not, but it does give a rough overview of how drastic the
changes would be. It all comes down to how exact the calculations need to be.
What should be noted however is that the gravitational force decreases with
height, meaning that if one calculates with a constant gravitational force, one
will actually set a lower limit for how fast the rocket should go. In practice
this may be a bad idea due to possible heating issue from going to fast while
still in the Earth's atmosphere due to air resistance. Furthermore, the force
will depend on the mass of the rocket. Since that will change too one needs to
consider how grave the errors will be in combination with how one approximates
the mass of the rocket. However, if one now decides to use equation (20), one
will then have from equation (17)

v = v0 + vrel ln

(
M0

M0 −Rt

)
− gt. (21)

3.2 Air resistance

When one says air resistance one should specify what one actually means. In
this case what's meant is drag, i.e. the resistance to moving in the direction of
the velocity. The force from the drag on an object is known to be [5]

F =
1

2
ρCAv2 (22)

where ρ is the density of the �uid that the object is moving through, C is a
coe�cient that is dependent on the geometry of the object, A is the frontal area
(i.e. the area facing the direction of the velocity), and v is as de�ned earlier
the velocity. Similar problems occur here as with gravity. That is, the density
of the �uid can vary with the distance travelled. For earth the air density can,
after 12 km, have been reduced to 25% of its original value [6]. One can �nd a
prediction on how the density will change, but it will be dependent on, among
other things, the height which itself it time-dependent. Then, when accounting
for these factors, equation (16) has to be solved numerically. For lower �ights
perhaps one can assume that the air density is constant. Equation (16) then
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has an analytical solution, i.e.

v = −
tanh

(√
vrel

1
2ρCA√
R

ln M0−Rt
M0

− arctanh(
v0
√

1
2ρCA√
vrelR

)

)
√

1
2ρCA

√
vrelR. (23)

This was solved with the help of Maple as it comes from a non-linear di�erential
equation. For more accurate predictions where the density is taken to be non-
constant, then there is no guarantee that there will be an analytical solution.

4 Design examples

Earlier in equation (9) there was a comparison between a single stage rocket
and a multi-stage rocket where one can see from given variables what is the
more e�ective design choice. To compare with other designs, equation (8) will
be reformulated to look like

v = v0 + vrel

n∑
i=1

ln

(
(n+ 1− i)Mf + (n+ 1− i)Ms + PL

(n− i)Mf + (n+ 1− i)Ms + PL

)
(24)

so Mi,initial = (n+ 1− i)Mf + (n+ 1− i)Ms + PL and Mi,final = (n− i)Mf +
(n + 1 − i)Ms + PL, where Mf is the fuel mass for a single rocket stage, Ms

is the structural mass for a single rocket stage, and PL is the payload (i.e. the
mass of what is wanted to reach the destination). An illustration can be seen
in �gure 1.

Figure 1: Figure of a rocket design where the structural parts are stacked upon
each other
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Another way to arrange the same rocket parts as before would be to stack
them parallel to each other as seen in �gure 2. If one just engages one engine
at the time and then discard it, one will have the same expression as (24).

Figure 2: Figure of a rocket design where the structural parts are stacked next
to each other

If one engages all the engines at the same time one gets

v = v0 + ln

(
nMf + nMs + PL

nMs + PL

)
. (25)

However, it's easy to see that this one will at best be as e�ective as a single
rocket piece without payload. But if one could have that to engage all engines
while transferring fuel to the inner most rocket pieces and discarding rocket
pieces that are empty. One then get the following equation

v = v0 + vrel

n∑
i=1

ln

(
(n+ 1− i)Mf + (n+ 1− i)Ms + PL

(n− i)Mf + (n+ 1− i)Ms + PL

)
(26)

which is the same as equation (24). So the designs are then equally e�cient
in terms of speed reached. But the parallel design will burn through the fuel
quicker, thus reach the velocity earlier. Furthermore, these comparisons has
only been made when there are no external forces, for example the design in
�gure 2 has clearly more air resistance.

5 Final words

In this paper no direct conclusions have been reached. Though a way to predict
a rocket velocity under some conditions has been presented. When discussing
rockets, the velocity isn't the most important part necessarily, but rather how
far it can travel. This is however something simple in theory to �nd out in
�rst approximation, one simply integrates the equation of motion over the time
interval that is travelled.
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To get better predictions one will have to use numerical methods, e.g to prop-
erly account for air resistance. Furthermore, this paper has only dealt with the
one dimensional case. In reality a rocket could travel in any three dimensions
which needs to be accounted for. For a lot of comparisons of what would be the
ideal rocket set-up when it comes to staging and forming, one would have to
deal with numerical values and a series of relations in style with equation (9).

Possible launch e�ects has not been investigated and could be of great interest.
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