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1 Introduction

In this paper we’ll review some of the concepts included in the Analytical Mechanics
course, such as generalized co-ordinates and forces, action and work in order to gain
theoretical understanding of how the Rayleigh Dissipation function may be included as a
non-conservative force in the dynamical analysis of a system where either dry or lubricated
friction is present.

2 General Concepts

2.1 Coordinates, forces and constraints

In the analysis of classical mechanical systems we utilize generalized co-ordinates. General-
ized co-ordinates can be considered as parametric representations of the typical Cartesian
co-ordinates. If a point particle in a typical Cartesian is under no constraint, it has three
degrees of freedom. If there are N amount of point particles under no constraint we say
that the system of N point particles has 3N degrees of freedom.

We may now implement k forces of constraint and therefore the system has 3N − k
degrees of freedom and our co-ordinate transformation will contain 3N −k generalized co-
ordinates, as well as a dependence in time. Denoting r1...rN as the set of transformation
equations we may write; (2)

r1 = r1(q1, q2 · · · q3N−k, t)
...

rN = rN (q1, q2 · · · q3N−k, t)
From now on, we’ll denote 3N − k simply as n.

The generalized force can then be expressed in terms of the applied force Fi and the
generalized coordinates. The subscript i denotes the applied forces and its corresponding
displacement. (4)

Qj =
N∑
i=1

Fi
∂ri
∂qj

j = 1...n

2.2 Conservative/n.c. forces

In order for a force to be conservative, the following conditions must be met: (5)

∇× ~F = ~0

W ≡
∮
C

~Fd~r = 0
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~F = −∇V

The Rayleigh dissipation function, as we will see, will allow us to describe the non-
conservative force of friction, hence we’ll focus on non-conservative forces in this report.
For a non-conservative force the net work W on a closed path is non-zero.

2.3 Principle of Least Action

The action of a system is expressed as:

S [q(t)] =

∫ t2

t1

L(q̇, (t)q(t), t)dt

the Lagranian, L, contains all the dynamical properties of a system in terms of the gen-
eralized co-ordinates. The principle of least action, where an infinitesimal change in S,
is:

δS = 0

In words, the mathematical formulation reads:

The path taken by the system between times t1 and t2 is the one for which the
action is stationary (no change) to first order (3)

This statement is historically a great discovery and is what has enabled the analysis of
physical systems in terms of the Euler-Lagrange equations of motion which it gave rise to.

Wikipedia provides some wonderful quotes from the physicist and mathematician Leon-
hard Euler and Pierre Louis Maupertuis. Maupertuis being the one who is usually credited
for the formulation of the principle.

“The laws of movement and of rest deduced from this principle being precisely
the same as those observed in nature, we can admire the application of it to
all phenomena. The movement of animals, the vegetative growth of plants
... are only its consequences; and the spectacle of the universe becomes so
much the grander, so much more beautiful, the worthier of its Author, when
one knows that a small number of laws, most wisely established, suffice for all
movements.”

—Pierre Louis Maupertuis

2.4 Virtual work

2.4.1 Virtual Displacement

Consider a force acting on a particle from point A to point B. The path from A to B can
be defined as r(t) where r(t1) = A and r(t2) = B. Thus, the work done by the force on
the particle is:
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W =

∫ t2

t1

F · ṙdt

Now, as a visual aid, imagine this path as a line on a piece of paper. If you were to
draw a new line, beginning and ending in the same points as the first line. The variation
from the original path would be δr(t) with components in the same plane as r. The new
path can now be described as r + δr and thus, the work done along the new path is

W̃ =

∫ t2

t1

F · (ṙ + δṙ) dt

The expression for virtual work for the virtual displacement δx is as such;

W̃ −W =

∫ t2

t1

F · δṙdt = δW

Since; δṙ = δ
d

dt
r

δW = F · δr

To generalize this for any system with constraints and n degrees of freedom the path
r(t) can be defined in terms of the generlized co-ordinates qj where j = 1...n.

Consider again the visual aid of the line on the paper and realize that the variation
δr(qj ...qn, t) can be represented by any function εh(qj ...qn, t) where ε is some scaling
constant. h(t) satisfies the condition; h(t1) = 0. Thus

δ
d

dt
r = εḣ = ε

(
∂h

∂q1
q̇1 + ...+

∂h

∂qn
q̇n

)
The principle of virtual work is an analogue of the principle of least action and says

that the actual path of the system is the one where the difference in work between the
physical displacement and the virtual displacement is zero (the virtual work is zero). In
mathematical terms:

δW =

∫ t2

t1

F · ε
(
∂h

∂q1
q̇1 + ...+

∂h

∂qn
q̇n

)
dt

The requirement that the virtual work be zero for the path εh(t) is equivalent to the
requirement that
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Qj = F · ∂h
∂qj

j = 1...n

Qj are the generalized forces associated with the virtual displacement δr

If these conditions are true then εh(q1...qn, t) is the actual path of the system.

2.4.2 Static equilibrium

A system is said to be in static equilibrium when the forces of constraint and applied forces
balance in such a way that the system doesn’t move.

The principle of virtual work states that for such a system, the virtual work of the
applied forces is zero (δW = 0 for any δr) for any displacement of the system. This is
equivalent to say that the generalized forces for any virtual displacement is zero (Qi = 0).

Consider now a system of N point particles being acted upon by Fj forces corresponding
to δrj virtual displacements where (j = 1...N). Then the virtual work is;

δW =
N∑
i=1

Fi · δrj

Generalized for a system of n degrees of freedom;

Qj =
N∑
i=1

Fi ·
∂ri
∂qj

, (j = 1...n)

the condition for static equilibrium is that;

δW = 0⇔ Qj = 0 , (j = 1...n)

It is important to note that the subscript i for the applied force and the displacement
is simply the total amount of forces and displacements which are applied to the system
while the subscript j is the amount of degrees of freedom of the system.

The principle can be generalized for a rigid body by applying it to the individual particles
of the body. It is said that compatible displacement of particles is when the inter-particle
forces cancel each other out due to the fact that their position relative to each other and
their relative velocities remain zero.

And so, when a rigid body is subject to compatible displacements the total virtual work
of the external forces is zero and the body is in equilibrium.
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2.4.3 Dynamic Equilibrium - D’alemberts principle

The principle of virtual work is a handy tool for a system in static equilibrium, it is
restricted and we wish to have a more general formulation which can handle dynamic
systems. In the previous section we concluded that the virtual work for a system in static
equilibrium is

δW =
∑
i

Fi · δri = 0

This is a familiar form and we may decompose the force into the components of the
active force, with superscript (a) and the force of constraint;

Fi = F
(a)
i + fi ⇒

δW =
∑
i

F
(a)
i · δri +

∑
i

fi · δri = 0

We now restrict ourselves to systems for which the net virtual work of constraint is
zero. There are no violations to the principle of virtual work here so we will proceed to
assume that this can be used to describe a particle moving across a surface. For this type
of system the force of constraint is perpendicular to the motion and it therefore vanishes
in the dot product.

We must exclude systems where sliding friction is present from this formulation since
sliding friction is a product of the perpendicular normal force, it would be the term would
be zeroed out and left un-accounted for. Rolling friction however does no work in an
infinitesimal displacement consistent with the rolling constraint so a system where rolling
friction is present does not need to be excluded from this formulation.

Once again we’ve found the expression for the principle of virtual work. To obtain a
formulation which deals with dynamics we use a device first though of by James Bernoulli
and later developed by D’Alembert; the equation of motion,

Fi −mai = 0⇔ Fi − ṗi = 0

which states that the particles of the system will be in equilibrium under a force equal to
the actual force plus a reversed effective force. We can now rewrite the previous equation
in terms of this expression;

∑
i

(
F
(a)
i − ṗi

)
· δri +

∑
i

fi · δri = 0 ⇔
∑
i

(Fi − ṗi) · δri = 0

On the right hand side of the arrow, the superscript (a) has been dropped since - with
no ambiguity - we’ve done away with the forces of constraint. The term vanished due to
the restriction that the force is perpendicular to the path of motion. This is what’s known
as D’Alembert’s principle.
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We’ve reached a mathematical formulation of virtual work in which there is no need to
account for the forces of constraint. However there are some restrictions to this formulation
and we need to introduce the virtual displacements of the generalized coordinates. As was
shown earlier the translation goes like this;

ri = ri(q1, q2, ... , qn, t) For a system of n d.o.f. and i = 1...N rigid bodies

The velocity vector is obtained through differentiation;

vi ≡
dri
dt

=
∑
i

∂ri
∂qk

q̇k +
∂ri
∂t

The expression for an arbitrary virtual displacement from before is still valid;

δri =
∑
j

∂ri
∂qj

δqj

Hence;

∑
i

Fi · δri =
∑
j

Qjδqj and Qj =
∑
i

Fi
∂ri
∂qj

Where, just as before, the Qj ’s are the components of the generalized force. It’s note-
worthy that the q’s and Q’s don’t necessarily have the dimensions of length or force. It
could also be that Q is a torque T and that it has a differential dθ instead of dq, then,
Ndθ is a differential of work.

From previous formulation of force as the time derivative of momentum and the formu-
lation of virtual work and virtual displacement, we have the following relation;

∑
i

mir̈i ·
∂ri
∂qj

=
∑
i

[
d

dt

(
miṙi

∂ri
∂qj

)
−miṙi ·

d

dt

(
∂ri
∂qj

)]
We’ll recall the definition of the velocity vector and multiply it by the partial differential

of qj so that;

∂vi
∂qj

=
∑
k

∂2ri
∂qj∂qk

∂q̇k +
∂2ri
∂qj∂t

By substitution;

∑
i

mir̈i ·
∂ri
∂qj

=
∑
i

[
d

dt

(
mivi ·

∂vi
∂q̇j

)
−mivi ·

∂vi
∂qj

]
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Expanding the expression for D’Alembert’s principle into it’s components of scalar
speeds and generalized coordinates and forces and abriviating the kinetic energy to T
gives;

∑
j

{
d

dt

[
∂

∂q̇j

(∑
i

1

2
miv

2
i

)]
− ∂

∂qj

(∑
i

1

2
miv

2
i

)
−Qj

}
δqj =⇒ (1)

∑
j

{[
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj

]
−Qj

}
δqj = 0

Qj =
∑
i

Fi ·
∂ri
∂qj

= −
∑
i

∇iV ·
∂ri
∂qj

So that;

Qj ≡ −
∂V

∂qj
⇒ d

dt

(
∂T

∂q̇j

)
− ∂(T − V )

∂qj
= 0

For a non-conservative system;

d

dt

(
∂T

∂q̇j

)
− ∂(T − V )

∂qj
= Q

(nc)
j (2)

This equation does not necessarily exclude non-conservative systems; only if V is an an
explicit, time-dependent function is the system conservative. As this equation stands, V
does not depend on the generalized velocities, therefore we will include it in the partial
derivative of q̇j so that;

d

dt

(
∂(T − V )

∂q̇j

)
− ∂(T − V )

∂qj
= 0 set; L = T − V =⇒

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0

These are the Lagrange equations. As you can tell from these equations they are derived
from the principle of conservative forces and since conservative forces aren’t directly related
to the dissipation function I will not extrapolate any further on these equations - namely
eq. (1), which is the expanded form of −ṗ · δr. The relevant equation is Eq. (2) as we’ll
see in the next section. (2)
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3 The Rayleigh’s Dissipation function

3.1 Formulation

As stated by Lord Rayleigh in his memoir from 1873, conservative forces may be included
in a potential function V so that the Lagrange equation becomes;

d

dt

∂T

∂q̇k
− ∂T

∂qk
+
∂V

∂qk
= Qnck (3)

Where the term on the left hand side are the generalized, non-conservative forces. As
shown multiple times so far we recall that the Lagrange equations are a restatement of
D’Alemberts principle of virtual works. The principle applies to a system of a = 1, ..., n
bodies with positions ra and masses ma. The holonomic constraints are expressed as
ra(q, t) where qk = 1, ..., l. We recall from the previous section that the generalized force
may be expressed as;

Q
(nc)
k =

∑
b

F
(nc)
b · ∂rb

∂qk

where F
(nc)
b is the non-conservative force acting on particle b.

On particle a acts a non-conservative force, linear in the velocities so that

Fak = −Kjkv
j
a

Where K is the symmetric, dissipation matrix, the force Fak may also be written as
−∇vaR where R is the dissipation function;

R =
1

2

∑
a

Kjkv
j
av
k
a

recalling;
∂va
∂q̇k

=
∂ra
∂qk

⇒ Q
(nc)
k = −

∑
a

∇vaR
∂va
∂q̇k

= − ∂R
∂q̇k

We may now rewrite the Lagrangian in terms of the dissipation function;

d

dt

∂T

∂q̇k
− ∂T

∂qk
+
∂V

∂qk
= − ∂R

∂q̇k
(4)

We note that R(q, q̇, t) is a quadartic polynomial in q̇, hence we observe that in this case
the power lost due to friction is;

10



Oskar Paulsson
opaulsson92@gmail.com Analytical Mechanics Final Project SSN: 920315-2450

−Q(nc)
k q̇k =

∂R

∂q̇k
q̇k = 2R

The paper by Ettore Minguzzi (1) aims to show a wider range of applications for the
dissipation function since the majority of previous work has only really considered its ap-
plication in the case of linear friction. Most of previous works do not consider a dissipation
potential or which types of friction would admit such a potential.

Therefore Minguzzi examines systems with non-linear friction and including but not
limited to, systems where Coulomb friction is present.

3.2 Surfaces at contact

Let’s consider a body B moving across a surface S0, let S1 be the surface of B that is
in contact with S0. For simplicity we’ll consider the case of uniform translation with
the speed v and the normal force perpendicular to the horizontal translation. Let N be
the normal force between the two surfaces, we’ll assume that the pressure is homogeneous
across the entire surface. Denoting µ(v) with the dimensionless coefficient of friction which
in general depends on the velocity-module. We can write the friction forces as;

F = −Nµ(υ)v̂ (5)

In the case of dry friction one typically has that µ(υ) starts from some non-zero value,
decreases and then increases again with velocity. For lubricated friction it starts linearly
in the velocity, it might then decrease and reach some local minimum and then increase
again for larger velocities. Here emerges the defining difference between Coulomb friction
and Stokes (viscous friction), if µ is independent from the velocity it’s Coulomb, if µ is
linearly dependent on the velocity it’s Stokes.

The formula (5) is not particularly useful in real life as the normal force isn’t necessarily
homogeneously distributed, and the motion may not be purely translational, it might
include some rotation.

A more general case to be considered is that the surface S0 isn’t necessarily horizontal
nor at rest. However we’ll assume that its normal vector keeps its orientation in space
fixed. We shall decompose S1 into n equal area components of A which we idealize as
point particles of area ∆A, so that A =

∑n
a=1∆Aa . Each particle has the velocity va

while the point on S0 instantaneously in contact with the particle a has the velocity vb,
the relative velocity is;

v(r)
a = va − vb

Then on particle a acts a force

F(nc)
a = −pa∆Aµ(υ(r)a ) v̂(r)

a (6)
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where pa is the pressure element on its respective area element ∆Aa. Let
∫ υ
µdυ be

any primitive function of µ, then;

R = ∆A
n∑
a=1

pa

∫ υ
(r)
a

µ dυ ⇒ −∇vaR = − ∂R

∂υ̇
(r)
a

and so

− ∂R
∂q̇k

= − ∂R

∂υ̇
(r)
a

Taking the limit n → ∞ and the denoting the dA as the area element ∆A we express
R as

R =

∫
S1

dAp(x)

∫ υ(r)(x)

µdυ

Introducing the new expression of R to the differential ∂R
∂q̇k

and observing the relation
p
N as an average;

Q
(nc)
k = −N

(
µ(υ(r))

∂υ(r)

∂q̇k

)
As for the value of p(x) it can in its simplest form be a constant when the normal force

N is uniformly distributed.
However, for non-lubricated contact, Minguzzi introduces a concept he calls ’Reye’s

assumption’ which won’t be covered in detail but its brings with it a new expression for
p = k

υ(r)
where k is a normalization constant.

We might imagine that the mass removed from B from a certain region on the surface
S1 due to wear caused by friction on the microscopic level is proportional to the work
done by friction on that region, it is proportional to pυ(r), the pressure element times the
relative speed. Lest this work be proportional, the profile of body B would be deformed
which would increase the pressure and B would be ground to an uneven stub. In other
words, asserting that pυ(r) is the only possibility for the profile of B to be constant and
the shape of S1 to be stationary.

The constant k is such that;

N =

∫
S1

k

υ(r)(x)
dA

Thus, utilizing Reye’s assumption we get two seperate expressions for R;

Homogeneous pressure:

R = N

(∫
S1

dA

)−1 ∫
S1

dA

∫ υ(r)(x)

µdυ
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Reye’s hypothesis:

R = N

(∫
S1

dA

υ(r)(x)

)−1 ∫
S1

dA

υ(r)(x)

∫ υ(r)(x)

µdυ

From eq. (4) we may now calculate the power lost due to friction;

P = −
n∑
a=1

F(nc)
a · v(r)

a =

n∑
a=1

pa∆Aµ(υ(r)a )υ(r)a

in the limit n→∞ gives;

Homogeneous pressure:

P = N

(∫
S1

dA

)−1∫
S1

µ(υ(r)a )υ(r)a dA

Reye’s hypothesis:

P = N

(∫
S1

dA

υ(r)(x)

)−1 ∫
S1

µ(υ(r)a dA

P in this case is not necessarily equal to 2R as the first demonstration of the Rayleigh
dissipation function showed. We need only calculate R which will be a straightforward
operation, utilizing the generalized co-ordinates.

P =
∂

∂q̇k
[Nµ(υr(x))] q̇k

We see that indeed, the power lost can be expressed in terms of the generalized co-
ordinates and is proportional to the coefficient of friction which is dependent on the velocity
of the area elements of S0 relative to the surface S1.

Some more examples will follow to demonstrate this further.

3.3 Example: The rotating stone polisher

Consider a device, the stone polisher, which consists of two concentric, counter-rotating
rings. For simplicity we’ll assume that they are of the same radius r and mass m, however
this is an unrealistic idealization. A more realistic version of the two rings is pictured
below;

13



Oskar Paulsson
opaulsson92@gmail.com Analytical Mechanics Final Project SSN: 920315-2450

ω

ω

Fx

Fy

y

x

M

θ

Figure 1: A more realistic figure of the rings.

This picture is more useful to understand how the actual device works in practice rather
than demonstrating the mathematics of this example, we assume Coulomb friction and
that the pressure us uniformly distributed over the rings. As a worker handles the device,
he imparts a force F = (Fx, Fy) and the momentum M . θ denotes the orientation of the
device as it is handled by the worker so that the rotated angle of the rings is θ±ωt which
is measured with respect to the horizontal reference abscissa. We’ll also denote a point on
the ring with the angle ϕ. The velocity of a generic point along the ring is expressed as;

~v = (ẋ− r sin (θ ± ωt+ ϕ)(θ̇ ± ω), ẏ + r cos (θ ± ωt+ ϕ)(θ̇ ± ω))

thus;

υ2± = î2 + ĵ2 = ẋ2 + ẏ2 + r2(θ̇2 ± ω)2

+2r(θ̇ ± ω) [−ẋ sin (θ ± ωt+ ϕ) + ẏ cos (θ ± ωt+ ϕ)]

Notice that the device has translational velocity across a surface as well as rotational
translations from the rings rotating and the entire device itself being rotated. To describe
the general motion of the device in velocity space we may introduce two co-ordinates (u, φ)
which denotes the velocity of the center of the ring. Then we have;
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υ2± = u2 + r2(θ̇ ± ω)2 − 2ur(θ̇ ± ω) sin (θ ± ωt+ ϕ− φ)

We’re only interested in the range rω >> u, rθ̇, which means that the rings are rotating
sufficiently fast with respect to the translational and rotational motion imparted on the
device by the agent worker. In this limit we have;

υ± = rω

[
1± θ̇

ω
∓ sin (θ ± ωt+ ϕ− φ) +

1

2

u2

rω2

(
1− sin2 (θ ± ω + ϕ− φ)

)]

up to quadratic terms in the velocity ratios θ̇
ω , u

rω . We may now formulate the Rayleigh
dissipation function;

R = N

(∫
S1

dA

)−1 ∫
S1

dA

∫ υ(r)(x)

µdυ =⇒

R± = R+ +R− = mg

(∫ 2π

0
dϕ

)−1 ∫ 2π

0
dϕ

∫ υ(r)(ϕ)

µdυ = µmg
1

2π

∫ 2π

0
υ±(ϕ)dϕ

' µmg
(
rω ± rθ̇ +

1

4

ẋ2 + ẏ2

rω

)
The dynamical energy equations are;

T =
1

2

[
2(ẋ2 + ẏ2) + 2r2(θ̇2 + ω2)

]
V = 0

2mẍ = −µmg ẋ
rω

+ Fx

2mÿ = −µmg ẏ
rω

+ Fy

2mr2θ̈ = M

From this example we conclude that for the translational degrees of freedom, the
Rayleigh function is linearly dependent on the rotational velocity on the rotating parts
of the device, therefore Stokes friction actually arises from the Coloumb friction of the
rotating parts, remarkable! However for the rotating degrees of freedom there is neither
linear or constant dependence.
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3.4 Example: The conveyor belt

In 1860 Bouchet did experiments on friction between different surfaces. One of the surfaces
was iron and he did measurments to determine the velocity dependence of the coefficient
of friction µ by sliding pieces of wood, leater and iron against an iron surface. He found
this approximate relation;

µ(v) =
µ0 − µ∞
1 + av

+ µ∞

where a, µ∞, µ0 are positive constants. For the sake of this example, we will assume that
it’s valid. Observe that the coefficient of friction will decrease for higher velocities and
reach a constant value which means that we will have Coloumb friction for high velocities
and for a→∞.

Consider a block of wood on a moving conveyor belt with some initial velocity (v0, 0), in a
cartesian coordinate system. A person exerts a force on the block (Fx, Fy), for simplicities
sake, we’ll assume that there is no rotation and that Fx is in the opposite direction of the
initial velocity so that the block does not move any further along the x-axis under the
influence of this force. The relative velocity does not change with the point of contact so
there is no need to apply Reye’s hypothesis. The relative velocity module is expressed as;

v(r) =
√

(ẋ− v0)2 + ẏ2

The Rayleigh dissipation function is;

R = N

∫ υ(r)(x)

µ(υ)dυ = N{µ0 − µ∞
a

ln [1 + a
√

(ẋ− υ0)2 + ẏ2]

+µ∞
√

(ẋ− υ0)2 + ẏ2}

There is no potential energy present so L = T and T is defined as we’re used to by now;
T = 1

2m(ẋ2ẏ2), so the equations of motion are;

d

dt

∂T

∂q̇j
= F

(applied)
j − ∂R

∂q̇j
⇒

mẍ = Fx −N{
µ0 − µ∞

1 + a
√

(ẋ− υ0)2 + ẏ2
+ µ∞}

ẋ− υ0√
(ẋ− υ0)2 + ẏ2

mÿ = Fy −N{
µ0 − µ∞

1 + a
√

(ẋ− υ0)2 + ẏ2
+ µ∞}

ẏ√
(ẋ− υ0)2 + ẏ2
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4 Conclusions

We’ve seen that the Rayleigh dissipation function can be included in the Euler-Lagrange
equations to estimate power-loss due to friction. We’ve also debunked the notion that this
function only deals with linear friction and we have shown that it may be used to estimate
both lubricated and non-lubricated friction with apparently no theoretical limit. Overall,
in studying the concepts which make up the foundation analytical mechanics I’ve learned
a lot and gained valuable insight into the origins of the Lagrangian equations of motion.
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