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Abstract

In this project the motion of a membrane is analysed. In the analysis we implement methods and
concepts developed in classical mechanics. In particular, we employ the Lagrangian formalism in order
to obtain the equation of motion of the membrane. The equation of motion of the membrane is the two-
dimensional wave equation which we solve in the special case when we have imposed a circular boundary
condition. The solutions may be seen as the idealised motion of a drum-head. We will then discuss
additional parameters that have to be included in a realistic drum model and study different techniques
that are used when modelling drums. Finally, we will see how this can be applied to a simple snare drum.



Introduction
The mechanics of musical instruments involve, in one way or another, vibrations and acoustic oscillations.
The musical instrument excites the surrounding air and our eardrums interpret these vibrations as sound. A
particularly interesting subset of musical instruments are percussion instruments and in particular, drums.
A typical drum consists of a rigid shell and one or two membranes. A player excites the membrane of the
drum usually by striking it with his or hers hands, a mallet or a stick and thus produces sound. However,
drums are not only interesting because they yield a way of expressing ones musicality but also from a physics
point of view. When analysing the motion of a membrane the two-dimensional wave-equation is obtained,
which is an important equation used in other areas of physics. Furthermore, it is of interest to interpret the
sound a drum produces in order to conclude why some drums sound better than others, why some musicians
are able to perform better on some drums, et cetera.

The analysis of the membranes may be done utilising concepts developed in classical mechanics. What
is conveyed in this project is different schemes of drum modelling and some understanding in the idealised
motion of membranes. For a more complete description of the motion of membranes and drum modelling
see [1, 2, 4, 5].

The Motion of the Membrane
In this section we will derive the equation of motion of a membrane and solve it when we have imposed a
circular boundary condition. The derivations are done similarly to those in [2].

Defining the System and its Energies

The membranes to our particular interest are stretched, thin surfaces where every point of the surface can
be displaced from the equilibrium state of the membrane. The equilibrium state of the membrane is when
the vertical displacement of every point of the membrane, denoted by u(x, y, t) is zero,that is

u(x, y, t)eq. = 0.

In our case, this is equivalent to saying that the configuration of the membrane is ”flat” and entirely contained
in the xy-plane. As we can see, we assume that every point can only move in the vertical direction z. The
membranes are massive and have an areal mass density denoted by ρ(x, y). For simplicity, we shall always
expect the areal mass density to be constant if not else stated. In general we only consider small displacements
of the membrane from its equilibrium configuration. The membranes also have a tension τ(x, y) and it is also
assumed constant, which by the preceding statement is a valid approximation. The energies in our system
are the kinetic energy of the membrane and the potential energy stored in the membrane when its surface
is deformed. Gravitational potential energy can be neglected when the magnitudes of the tension and the
gravitational acceleration satisfy τ dA � gρdA which is very often the case and it will be assumed for our
purposes. The kinetic energy, denoted by T , of the membrane is

T dA = 1
2ρdA u̇2 (1)

where the actual deformed surface dS has been replaced by dA, an approximation which holds for small
displacements. In contrast, potential energy, denoted by V, is due to the increase in area of the membrane
when it is deformed and is thus stated as

V dA = τ(dS − dA), (2)

we have to evaluate dS in order to make sense of the potential energy. The instantaneous configuration of
the membrane dS can be calculated by a parametrisation of the surface. A parametrisation of the surface is

r(x, y, z) = [x, y, u(x, y)],

as we can see r is a function of x, y and u. The area dS is obtained by finding two vectors tangent to the
surface and taking the absolute value of their cross-product. The vectors tangent to the surface are of course

1



the partial derivatives of r whose cross-product is the transformation of dS onto dA. Hence, we get

dS =

∣∣∣∣ ∂r∂x × ∂r

∂y

∣∣∣∣ dA,
which can be calculated to obtain

dS =
√

1 + (∂xu)2 + (∂yu)2 dA⇒ (3)

dS =
√

1 + (∇u)2 dA, (4)

where the notation ∂µf in equation (3) should be interpreted as partial differentiation of f with respect to
µ and ∇ in equation (4) is a vector differential operator, in our case given by

∇ = [∂x, ∂y].

When inserting equation (4) into the potential energy, equation (2), we see that the potential energy may
be written as

V dA = τ(
√

1 + (∇u)2 − 1) dA

≈ 1
2τ(∇u)2 dA. (5)

The last approximation holds for small displacements of the membrane, and it is the result of the Taylor
expansion

√
1 + x ≈ 1 + 1

2x.

The Equation of Motion of the Membrane

In order to find the equation of motion of the membrane we shall apply the Lagrangian formalism, as in [2].
In particular, we shall utilise the Euler-Lagrange equations, which follow from the Principle of Least Action.
Finding the equation of motion of a membrane is a field-theory problem with one generalised coordinate
u(x, y, t). The Euler-Lagrange equations in field-theory, for a system with one generalised coordinate u, are
given by

∂t
∂L

∂(∂tu)
+ ∂i

∂L
∂(∂iu)

− ∂L
∂u

= 0, i ∈ {1, 2}. (6)

L is the Lagrangian-density, which for the membranes discussed is

L = T − V = 1
2ρu̇

2 − 1
2τ(∇u)2 = 1

2ρ(∂tu)2 − 1
2τ [(∂xu)2 + (∂yu)2]. (7)

As we can see, the Lagrangian-density is a function of u and its partial derivatives with respect to the spatial
coordinates and time. In this problem the Euler-Lagrange equations (6) can be stated more explicitly as

∂t
∂L

∂(∂tu)
+ ∂x

∂L
∂(∂xu)

+ ∂y
∂L

∂(∂yu)
− ∂L
∂u

= 0. (8)

By inserting the Lagrangian-density (7) into the Euler-Lagrange equations (8) we obtain

∂t
∂L

∂(∂tu)
= ∂t[ρ(∂tu)],

∂x
∂L

∂(∂xu)
= ∂x[τ(∂xu)],

∂y
∂L

∂(∂yu)
= ∂y[τ(∂yu)],

∂L
∂u

= 0.

(9)
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When we recombine the calculations in equation (9) as they are stated in equation (6) we find

ρ ∂ttu− τ(∂xxu+ ∂yyu) = 0 (10)

Equation (10) may be written as

ρ ∂ttu− τ∇2u = 0. (11)

We see that equation (11) is the two dimensional wave-equation often stated as

1

c2
∂2u

∂t2
= ∇2u, (12)

where c is the speed at which the waves propagate, given by

c2 ≡ τ

ρ

and ∇2 is the Laplace operator in Cartesian coordinates, defined as

∇2u =
∂2u

∂x2
+
∂2u

∂y2
.

Solving the Equation of Motion with Circular Boundary Condition

In the previous section we derived the general two-dimensional wave equation which holds for any membrane
under the same assumptions stated before. However, if the membrane is finite, which all physical membranes
are, we need to impose boundary conditions. Since we are concerned with drum-heads, we are interested in
circular membranes. If the circular membrane has radius a and the domain of definition D, then D is given
by

D : {x2 + y2 ≤ a}, x, y ∈ R.

Furthermore, the value of u on the boundary of D is zero, that is

u = 0 on ∂D. (13)

When analysing circular membranes it is convenient to introduce polar coordinates

x = r cos(θ),

y = r sin(θ).

The function u describing the displacement of the membrane is now a function of r and θ,

u = u(r, θ; t).

The Laplace operator takes the form

∇2u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
.

Thus, the equation of motion is now of the form

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
, (14)

which follows immediately from equation (12). Our goal is to find solutions to equation (14), a second order
partial differential equation [3]. We seek solutions that separate the variables r, θ and t, i.e, the solution is
a superposition of functions governing the variables separately. The solution should thus be of the form

u(r, θ; t) = R(r)T (t)Θ(θ), (15)

with the boundary condition that

R(a) = 0. (16)

Equation (16) is of course a consequence of the statement given by (13).
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The Radially Symmetric Case

We shall first study the case when the modes of the membrane are radially symmetric, which means that
there are no angular nodes. In this particular case, equation (14) does not depend on θ and reduces to

1

c2
∂2u

∂t2
=
∂2u

∂r2
+

1

r

∂u

∂r
. (17)

Equation (17) in terms of the separation of variables given by (15) becomes

1

c2
T ′′(t)R(r) =

(
R′′(r) +

1

r
R′(r))

)
T (t).

When dividing both sides with R(r)T (t) we arrive at

1

c2
T ′′(t)

T (t)
=

(
R′′(r) +

1

r
R′(r))

)
1

R(r)
. (18)

We see that the left hand side of equation (18) depends only on t and the right hand side depends only on
r. Therefore both sides must be equal to some constant, which we shall call −λ2. −λ2 is also called the
separation constant and is, as the name suggests, due to the separation of variables. Equation (18) reduces
to two uncoupled differential equations, namely

T ′′(t) = −λ2c2T (t), (19)

rR′′(r) +R′(r) + λ2rR(r) = 0. (20)

For −λ2 < 0 equation (19) is periodic and has the general soultion

T (t) = A sin(λct) +B cos(λct). (21)

The differential equation for R, equation (20), is of the form

x2
d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0. (22)

Differential equations such as equation (22) have solutions called Bessel functions, written as

y = c1Jm + c2Ym,

where Jm is the Bessel function of the first kind and Ym is the Bessel function of the second kind. Also, the
constant m is the order of the corresponding Bessel function. Bessel functions are discussed in more detail
in the Appendix of this article. In our particular case m = 0 and thus the solutions of R is Bessel functions
of order 0,

R(r) = c1J0(λr) + c2Y0(λr). (23)

However, as r → 0, Y0 → ∞ and infinite displacements of the membrane is a physical impossibility so this
solution has to be discarded, i.e., c2 = 0. The constant c1 can also be set to c1 = 1 because this constant can
be absorbed by the constants A and B in equation (21). We now have to implement the boundary condition
given by eqation (16). So we conclude that

R(λa) = J0(λa) = 0. (24)

A trivial solution to equation (24) would be that λ is zero but we seek non-trivial solutions. Then λ has to
be equal to any of the infinite roots of J0,

λa = 0 ⇔ λ0,n =
α0,n

a
, for n = 1, 2, 3, . . .
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Where α0,n is the nth root of J0. The index 0, n is there because 0 represents the order of the Bessel function.
In the radially symmetric case, the Bessel function Jm is always of the order zero, m = 0, but as we shall
see in the following section, when introducing dependence of Θ(θ) this is not necessarily the case (m = 0 is
just one of infinitely many solutions).

The solution to the radially symmetrical case is thus given by

u(r; t) = (A sin(λ0,nct) +B cos(λ0,nct))J0(λ0,nr).

The General Case

In the case where we also allow the membrane to have angular nodes, we shall return to the description of
the solutions given by equation (15). Equation (14) then becomes much like equation (18) but now we have
contributions from Θ(θ), namely

1

c2
T ′′(t)R(r)Θ(θ) =

(
R′′(r) +

1

r
R′(r))

)
T (t)Θ(θ) +

1

r2
Θ′′(θ)R(r)T (t).

We divide by R(r)T (t)Θ(θ) to obtain

1

c2
T ′′(t)

T (t)
=
R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
. (25)

Again we can say that equation (25) is equal to a constant due to the mutual independence of the different
parts of the equation. This constant is again set to −λ2. As we can see, the solution for T (t) will be identical
to the one of the radially symmetric case, given by equation (21). The remainder of equation (25) then
becomes

−λ2 =
R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
. (26)

When multiplying equation (26) with r2 we again have successfully separated the variables in the differential
equation, that is

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+ λ2r2 = −Θ′′(θ)

Θ(θ)
. (27)

Since the variables are separated and the functions does not depend on each other, they must be equal
to some new constant which will be m2. Equation (27) can thus be restated as two uncoupled differential
equations, that is to say

Θ′′(θ) = −m2Θ(θ), (28)

r2R′′(r) + rR′(r) + (λ2r2 −m2)R(r) = 0. (29)

It should now be clear that equation (28) has trigonometric solutions given by

Θ(θ) = C sin(mθ) +D cos(mθ), m ∈ Z, (30)

where C and D are some arbitrary constants. The last requirement in equation (30), that m must be an
integer, is because the function Θ(θ) must be single-valued (one-to-one). Θ(θ) is then required to satisfy

Θ(θ + 2π) = Θ(θ),

which then is equivalent to m being an integer.
As we can see the solutions to the differential equation (29), just as in the radially symmetric case, has

Bessel functions as solutions. By the same arguments as in the previous sections what we end up with is

R(r) = Jm(λr), (31)
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where the Bessel function is now of the mth order. Once more we implement our boundary condition given
by equation (16). As in the previous section we get that λa must be one of the roots of the Bessel functions.
Now however, the Bessel functions are not of order zero but of any integer order. λ is thus given by

λm,n =
αm,n
a

, for

{
n = 1, 2, 3, . . .
m = 0, ±1, 2, ±3, 4, . . .

(32)

The reason why m ranges like it does in equation (32) is due to the nature of the Bessel function Jm. It
satisfies the relation

J−m = (−1)mJm,⇒ J−m =

{
Jm if m is even
−Jm if m is odd

The solution to differential equation (29) is therefore

R(r) = Jm(λm,nr). (33)

Combining solutions given by equations (21), (30) and (33) with the identification that ωm,n = λm,nc,
where ωm,n are called the eigenfrequencies, we obtain the general solution to the circular membrane problem,
namely

u(r, θ; t) = R(r)T (t)Θ(θ) = Jm

(ωm,n
c

r
)

[A sin(ωm,nt) +B cos(ωm,nt)][C sin(mθ) +D cos(mθ)]. (34)

Different combinations of m and n in the solution given by equation (34) form so called normal modes or the
eigenmodes of the membrane. All real vibrations and displacements of the membrane are linear combinations
of the normal modes.

Modelling Drums
What we have concluded so far concerning circular membranes has applicability in sound synthesis and
the understanding of the behaviour of circular drums. However, the equation governing the motion of the
membranes that we have derived is an idealisation of the motion of a real membrane and can only be used in
coarse approximations. If we want to make the model fit better to realistic drums we have to introduce the
notion of tension modulation and various types of dissipation. Moreover, the geometry of a drum is more
than just a single circular membrane, which of course must be incorporated into a realistic model. Most
drums consists of two parallel membranes which together with a cylindrical shell, encloses an air-filled cavity.
A simple snare drum is shown in Figure 1 and discussed further in an upcoming section about snare drum.
When the drum is struck with a mallet or a drum stick, the whole drum, i.e., the membranes, the shell, the
air in the cavity and the surrounding air, starts to vibrate, not only the membrane that was struck. Taking
all factors mentioned into account makes the model much more complicated than the membrane previously
discussed.

Methods: FDTD versus Eigenmode Expansion/Modal Synthesis

From what I have gathered, the two main methods used to model drums are either the finite difference time-
domain method (FDTD from now on) or the eigenmode expansion method. In this particular area of research
eigenmode expansion is often called modal synthesis. Both methods have their weaknesses and strengths
and what method to use depends on the problem that is to be analysed. In modal synthesis (see [1]) you
find the normal modes or the eigenmodes of the problem and then use these to build up the structure of the
motion by a linear combination of the eigenmodes. Much of what was done in the previous section is in the
spirit of modal synthesis. The weaknesses of modal synthesis is that in order for the method to work the
problem must be linear and time invariant, i.e., a eigenvalue problem must be derived. In many models we
want to take non-linearities and dissipation into account and modal synthesis might not be suitable. Another
weakness is that if the object studied has complex geometry, finding the eigenfunctions and eigenfrequencies
might be cumbersome. However, when the method can be applied it gives insight and decomposes the
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problem into linear combinations of harmonic oscillators. In FDTD (see [5]) finite differences are used in
the time domain to approximate derivatives. The computational domain is established by a grid in which
the finite differences are computed. It has the advantages that the problem is not required to be linear and
time invariant and it is also generally more efficient. The disadvantage is that the entire computational
domain must be gridded in order to make the method work. In my opinion this method is a bit brutish and
less elegant than the modal synthesis method, but it gets the job done.

The Snare Drum

A snare drum is a drum used in all standard drum kits for rock, pop and jazz music. It consists of a upper
membrane, a lower membrane, a rigid shell and snares. The upper membrane is called the batter head,
denoted by Mb and is the surface which the player hits with a mallet or a stick. The lower membrane is
called the carry head, denoted by Mc and attached to the carry head are several metal wires called snares.
For simplicity, in our model we only have one snare, denoted by Ds and of length L. The batter head and
the carry head together with a rigid shell, S, encloses an air-filled cavity. The snare drum has a snappy
characteristic timbre much due to the snares. In Figure 1 the model is shown.

Figure 1: A snare drum. The different parts of the snare drum is explained in the picture in the corresponding
colour.

The Drum Heads

The equations governing the drum-heads, i.e., the batter head and the carry head, are essentially the same
as equation (14) but driving and dampening forces are present. We shall use the notation

Mi =

{
Mb if i = b
Mc if i = c

a trivial but useful rule which holds for all variables. The equations for the the drum heads are

ρb
∂2ub
∂t2

= Lb[ub] + F+
b + F−b + FM , (35)

ρc
∂2uc
∂t2

= Lc[uc] + F+
c + F−c + Fs + FL + F0, with, (36)

Li[ui] = τi∇2
2Dui − 2ρiσ0,i

∂ui
∂t

+ 2ρiσ1,i∇2
2D

∂ui
∂t

. (37)

Equation (35) governs the motion of the batter head, equation (36) describes the motion of the carry head
and (37) is defined just for convenience and groups together linear terms of the wave equation. In contrast
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to equation (14) we now have several forces present (dimension force per area). F+
i and F−i are the air

pressure exerted above and under each drum head. FM is the collision force exerted on the batter head by
the mallet. The force Fs is also a collision term and it is due to the snare attached to the carry head. Forces
F0 and FL are also due to the snare but these forces are present at the ends of the snare. In (37), σ1,i and
σ0,i are loss coefficients, frequency-dependent and -independent, respectively.

Air and the Coupling of the Drum Heads

The model that can be used for the air surrounding and inside the drum is given by

∂2Ψ

∂t2
= c2a∇2

3DΨ + caσa
∂Ψ

∂t
. (38)

In equation (38), Ψ(x, y, z; t) is the acoustic velocity potential of the air. A velocity potential has the
property that the gradient of the potential is the velocity of the fluid. The name ”acoustic” before the
velocity potential is present because we are talking about the motion of air and in particular, sound. Around
the shell of the drum we implement the condition that

∇3DΨ · n = 0,

which means that the vector normal to the shell S, denoted by n, is perpendicular to the gradient of the
velocity potential, i.e., the vector normal to the shell is perpendicular to the velocity of the air. The air inside
the drum is the reason why there is a coupling of the drum heads. We can draw some qualitative conclusions
about the coupling of the drums via the normal modes. The nodes (m,n) where m > 0, i.e., the modes with
angular nodes, there is no net displacement of the air surrounding the drum heads and therefore these modes
will not significantly contribute to the coupling of the membranes. In contrast, radially symmetric modes,
(0, n), (especially the (0, 1) mode) will contribute to the coupling of the drum heads since there is a net air
displacement. The radially symmetric modes have a great affect of the timbre and sound of the drums.

Mallet-Drum Interaction

The mallet that will excite the batter head can be modelled as an elastic body, however, for simplicity
it is often modelled as a ”lumped” body. The mallet will is not necessarily point-like but is defined as a
distribution gb with the normalisation that

∫
Mb

gb = 1. The mallet is of course striking from above and its
position is denoted by zM . The mass of the mallet is M . The force exerted by the mallet is thus

fM = Mz̈M .

fM is related to the force density in equation (35) in this fashion:

FM = −gbfM . (39)

The interaction force of the mallet and the drum is also often defined by the mutual interpenetration, η, of
the batter head and the mallet. When this is done it is usually defined by a power law of the form

fM = κM [η]α+, η =

∫
Mb

gbub dxdy − zM . (40)

κM > 0 is the stiffness parameter of the mallet and α > 1. The symbol [η]+ = (η + |η|)/2 and is due to the
condition that η is only active when it is positive. This type of approach traces its origins at the end of the
19th century.

Tension Modulation

A very important effect that has not been taken into account in previous derivations is tension modulation.
A realistic model must incorporate tension modulation since it is so important for the timbre of the the
drums [1]. For instance, the characteristic ”pitch-glide” of certain drums such as toms is due to tension
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modulation. Tension modulation arises when large amplitude oscillations of the membrane are present.
At large amplitudes, the tension of the membrane becomes non-linear and these effects appear. Tension
modulation can be described quantitatively via the Föppl-von Kármán equations, which is done in [1]. We
will not go into the details because it craves much consideration, however, it is important as a concept and
should be present in a realistic model, as mentioned before.

Conclusions
We have in this article learnt how to derive the motion of an arbitrary membrane with constant areal density
and tension. We have discussed when constant tension is a good approximation and we have discussed its
limitations. We then used the equation of motion that was found by analysing an arbitrary membrane and
then focused on the special case where the membrane is a circular disk. When finding the solutions of the
equation of motion of the circular membrane we searched for solutions that are superpositions of functions
governing the individual variables. This could have been done differently by implementing Sturm-Liouville
theory and particularly Sturm-Liouville transforms. Ultimately, we would of course find the same solutions
and draw the same conclusions but this is an alternative. Finally, we utilised the understanding gained by
analysing the circular membrane problem to discuss different approaches to model drums, especially the
snare drum. What was discussed in this project is of course applicable to other types of drums too and more
importantly, other areas of research. The motion of vibrating membranes is interesting in a wide variety of
areas such as bio-mechanics when studying the ear drum, vibrating plates and therefore material science and
the concepts used when discussing modes and eigenfrequencies are important in the quantisation of waves.
What has been discussed in this project is not directly relevant to quantum mechanics and atom physics but
is interesting at least conceptually.

Appendix

Bessel’s equation and Bessel functions of the first kind

In the derivation of the solutions to differential equation (14) we made use of Bessel’s equation, equation
(22), and the knowledge that this equation has Bessel functions as solutions. Little notice was given to how
one obtains these functions but that is a very interesting matter which we shall study more closely. We will
constrain our investigations to n ∈ N in equation (22), which is sufficient for our purposes. In this derivation
we mostly follow [3].

When dealing with differential equations it is a well known fact that we are not always able to find
analytical solutions and if we do they may not be in terms of regular functions. A common method of
solving differential equations that does not have any obvious solutions in terms of regular functions, is to
use power series. A power series is an infinite series of the form

f(x) =
∞∑
n=0

an(x− c)n =

= a0 + a1(x− c) + a2(x− c)2 + . . .

(41)

In the particular case when the coefficient of the power series (41) is given by

an =
f (n)(c)

n!
,

it is called the Taylor series of the function f .
When we use power series to solve differential equations, we assume that there exists a power series repre-
sentation to the solution. Let’s take a simple example: solve

y′(x)− y(x) = 0, (42)

with the use of power series (of course this differential equation can be solved by easier methods but it serves
as a good demonstration). We assume a solution with power series representation, as defined by equation
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(41), namely

y(x) =

∞∑
n=0

anx
n. (43)

The derivative of (43) is

y′(x) =

∞∑
n=1

annx
n−1. (44)

We put equations (43) and (44) back into our original differential equation (42) and get

∞∑
n=0

anx
n −

∞∑
n=1

annx
n−1 = 0. (45)

We want both summations in equation (45) to start at the same n and this is obtained by replacing n by
n+ 1 in the second summation in equation (45). When we do this, we obtain

∞∑
n=0

xn[an − an+1(n+ 1)] = 0.

If we only concern ourselves with non-trivial solutions, we have that

an − an+1(n+ 1) = 0⇔ an+1 =
an
n+ 1

. (46)

By plugging in some numbers into (46) we see that it follows the pattern

an =
a0
n!
. (47)

Combining this result, (47), with our initial guess, (43) we have that

y(x) =

∞∑
n=0

a0
xn

n!
= a0e

x. (48)

As we easily can see, equation (48) is indeed a solution to differential equation (42).
The same thought process applies when solving Bessel’s equation, (22). However, when solving Bessel’s

equation, we must be a bit more general and in this case we assume the solution to be of the form (Frobenius
method)

y(x) = xk
∞∑
m=0

amx
m. (49)

The derivatives of equation (49) is

y′(x) =

∞∑
m=0

am(m+ k)xm+k−1,

y′′(x) =

∞∑
m=0

am(m+ k)(m+ k − 1)xm+k−2.

(50)

Inserting equations (49) and (50) into Bessel’s equation (22), we get

∞∑
m=0

am(m+ k)(m+ k − 1)xm+k +

∞∑
m=0

am(m+ k)xm+k +

∞∑
m=2

am−2x
m+k −

∞∑
m=0

amn
2xm+k = 0. (51)
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We look for non-trivial solutions to equation (51) so we immediately exclude the possibility that xm+k = 0.
The first, second and fourth summations in equation (51) will contribute for m = 0 and m = 1. All
summations will contribute when m ≥ 2. We have

m = 0 : a0[k(k − 1) + k − n2] = 0, (52)

m = 1 : a1[(k + 1)k + k + 1− n2] = 0, (53)

m ≥ 2 : am(k +m)(k +m− 1) + am(k +m) + am−2 − amn2 = 0. (54)

Since a0 is defined as the first non-zero coefficient in the series, it can be excluded from equation (52).
Moreover, equation (52) has a name, it is called the indicial equation. The indicial equation tells us about
the roots of the solutions. The solution to the indicial equation, (52), is

k = ±n,

but we will only concern ourselves about the case when k = n. Inserting k = n into equations (53) and (54)
yields

a1(2n+ 1) = 0 (55)

and

amm(2n+m) + am−2 = 0. (56)

Initially we assumed that n ∈ N and thus n ≥ 0. Then equation (55) says that a1 = 0. Further, if a1 is zero,
then according to equation (56) for all odd indices m, am = 0. It is then a good choice to change index to
m = 2j and then equation (56) becomes

a2j =
a2j−2

22j(j + n)
. (57)

We can easily check that equation (57) follows the recurrence pattern

a2j =
(−1)ja0

22jj!(n+ 1)(n+ 2) . . . (n+ j)
. (58)

In equation (58) a0 is an arbitrary factor. It is convenient to choose a0 in such a way that it makes the
expression (n+ 1)(n+ 2) . . . (n+ j) in the denominator in equation (58) become a factorial expression. If we
choose

a0 =
2n

n!

equation (58) becomes

a2j =
(−1)j

22j+nj!(n+ j)!
. (59)

Combining equation (59) with our initial guess, (49), we finally arrive at

Jn ≡ y(x) = xn
∞∑
j=0

(−1)jx2j

22j+nj!(n+ j)!
. (60)

Equation (60) defines the so called Bessel function of the first kind of nth order. In this derivation, as said
before, n ∈ N which of course can be generalised so that Jn can be of any real or complex order, but it is not
within the scope of the circular membrane problem. Furthermore, there is so called Bessel functions of the
second kind but for the same reasons as mentioned before they will be left out for the reader to investigate
on their own. In Figure 2 we see a plot of some orders of the Bessel functions of the first kind.

11



Figure 2: A plot of Jn where n = 0, 1 and 2.
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