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Abstract

In this paper, the principle of least action in classical mechanics is
studied. The term is used in several different contexts, mainly for Hamil-
ton’s principle and Maupertuis’ principle, and this paper provides a dis-
cussion on the usage of the term in both of these contexts, before diving
deeper into studying Maupertuis’ principle, also known as the abbreviated
principle of least action.
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1 Introduction

1.1 Some Historical Remarks

Historically, in classical mechanics the term principle of least action and action
have both had different meanings. What we today refer to as Hamilton’s prin-
ciple and Maupertuis’ principle have both been attributed as the principle of
least action, and are occasionally confused.

The first edition of the principle of least action may be traced back to Pierre
Louis Maupertuis’, who defined the action as

ˆ
v ds

together with the principle that the ”correct path” between two specified points
is given by the minimization of the action. Maupertuis’, however, applied his
principle only to light rather than matter, and derived it by considering Fermat’s
principle which states that light follows the path of shortest time. [6]

Independently of Maupertuis, Leonard Euler defined the action as
ˆ
mv ds

and applied the principle that this integral is minimized for the motion of a
particle. Thus Euler’s principle was a more general one applying to all mechan-
ical systems and not merely to light. Nevertheless, Maupertuis’ got credited
as the inventor of the principle [5]. This definition of the action is today re-
ferred to as the abbreviated action, denoted S0, and the principle is referred to
as Maupertuis’ principle or the principle of least abbreviated action.

The modern definition of the action, denoted by S, is the one used in Hamilton’s
principle [1], namely,

S =

ˆ t2

t1

L dt

that is, the integral of the Lagrangian L over time from some initial time t1 to
some final time t2. Hamilton’s principle states that the dynamics of a mechanical
system is specified by the condition that the action S has a stationary value,
i.e.

δS = 0.

Hamilton’s principle differs from Maupertuis’ principle in that the times t1,t2
are fixed, whereas in Maupertuis’ principle there is no explicit reference to time.
Another difference is that Hamilton’s principle leads to the equations of motion
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q(t) of the system, whereas in Maupertuis’ principle only gives the shape of
the trajectories [5]. Also, Maupertuis’ principle requires that the energy (or,
more precisely, the Hamiltonian) is conserved over the varied paths, whereas
Hamilton’s principle does not. In modern terminology, the principle of least
action is most often used interchangeably with Hamilton’s principle.

In both Maupertuis’ principle and Hamilton’s principle, the action is not re-
quired to be at a minimum but, rather, have a stationary value [1]. Therefore
we may more correctly speak of the principle of stationary action, a name which
also occurs in modern texts.

With this historical introduction and discussion out of the way, we now start
with a few definitions and proceed in the next section with a general variational
method leading up to Maupertuis’ principle.

1.2 Definitions and Formal Statements of the Variational
Principles

• We consider systems with n degrees of freedom and holonomic con-
straints such that the forces of constraint do no net virtual work, and
assume that the system has n independent generalized coordinates
q1, . . . , qn. We denote by q the ordered n-tuple of coordinates (q1, . . . , qn),
or a column vector with entries qi.

• All applied forces are assumed to be derivable from a generalized scalar
potential U(q, q̇; t), and the total kinetic energy of the system is denoted
by T . The Lagrangian of the system is then defined by

L (q, q̇; t) = T − U

• The n-dimensional Cartesian hyperspace with axes q1, . . . , qn is called con-
figuration space. A point q0 in configuration space represents the sys-
tems configuration at some time t0, and the evolution of the system point
with time is described by a path q(t) in configuration space, parametrized
by time t.

• The action S is a functional defined by [4]

S[q(t)] :=

ˆ t2

t1

L
(
q(t), q̇(t); t

)
dt (1)

taking as its argument a set of functions q(t) with endpoints q1 = q(t1)

and q2 = q(t2), and returning a scalar.
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• Hamilton’s principle or the principle of least (stationary) action
states that [1] [7], for the correct path q(t) taken by the system between
two endpoint configurations (q1,q2) ≡ Q and fixed times (t1, t2) ≡ τ ,(

δS
)
Q,τ

= 0

where
(
δS
)
Q,τ

denotes variation δS of the paths q(t) subject to fixed Q

and τ . In other words, for the correct path q(t) of the system point in
configuration space, the action S has a stationary value to first order
with respect to all neighbouring paths between the same events, differing
infinitesimally from the correct path.

• The canonical momentum pi conjugate to the coordinate qi is defined by

pi =
∂L

∂q̇i

and we denote by p the ordered n-tuple of momenta (p1, . . . , pn), or column
vector with entries pi. The Hamiltonian is then given by

H(q,p; t) = piq̇i −L

• The abbreviated action S0 is also a functional, defined by [4]

S0(C) :=

ˆ
C
p • dq =

ˆ
C
pi dqi =

ˆ t2

t1

pi(t)q̇i(t) dt (2)

Here the argument is the path C followed by the system point in config-
uration space with endpoints q1, q2, without regards to any particular
parametrization.

• Consider systems for which the Hamiltonian H is conserved. The modern
formulation of Maupertuis’ principle or the abbreviated principle
of least (stationary) action may be stated [6] as: For he correct path
taken by the system,(

δS0
)
Q,H

= 0

where
(
δS0
)
Q,H

denotes the variation δS of the path C in configuration
space subject to fixed endpoints (q1,q2) ≡ Q and conserved Hamiltonian
H. Here the variation is done allowing changes in t1 and t2. In other
words, out of all possible paths for which the Hamiltonian is conserved,
the system takes that path which makes the abbreviated action S0 have a
stationary value to first order with respect to all infinitesimally differing
paths between the same endpoints.
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2 General Variation of the Action

We consider the action integral as defined by equation (1) and vary the endpoints
Q ≡ (q1,q2), the path connecting them, and the endpoint times τ ≡ (t1, t2). A
family of varied paths may be written as

Cα : qi(t, α) = qi(t, 0) + αηi(t) (i = 1, . . . , n) (3)

where q(t, 0) ≡ q(t) is the correct path, α an infinitesimal parameter, and ηi(t)

are arbitrary continuous differentiable functions. Note that the a particular
parametrization q(t, α) for a given path Cα is arbitrary and allowed to vary in
the δ-variation.

It is useful to denote this total variation by δ, and let δQ and δτ denote the
variations keeping Q ≡ (q1,q2) and τ ≡ (t1, t2) fixed, respectively.
The δτ -variation in the coordinate qi at a time tk (= t1, t2) is done as(

δqi(tk)
)
τ

= qi(tk, α)− qi(tk, 0) = αηi(tk)

and the total δ-variation of the coordinate qi at a time tk is, to first order,

δqi(tk) = qi(tk + δtk , α)− qi(tk, 0)

= qi(tk + δtk , 0) + αηi(tk + δtk)− qi(tk, 0)

= qi(tk + δtk , 0)− qi(tk, 0)︸ ︷︷ ︸
=q̇i(tk) δtk

+ α ηi(tk + δtk)︸ ︷︷ ︸
=ηi(tk)+η̇i(tk) δtk

= q̇i(tk) δtk + αηi(tk) + η̇i(tk)���α δtk

The first contribution comes from varying tk holding the original point qi(tk)

fixed, and the second contribution comes from varying qi(tk) holding tk fixed.
Thus we have the following relationship between δqi and (δqi)τ ,

δqi(tk) = q̇i(tk) δtk +
(
δqi(tk)

)
τ

(4)

This will hold for any arbitrary time tk if we denote the second term by
(
δqi(tk)

)
tk

.

We may visualize this variation by imagining a rubber band with tic marks tk
corresponding to points q(tk). When we perform the first part of the variation,
we keep the shape of the rubber band fixed and change only the locations of
the tic marks tk (and hence change the locations of the points q(tk)). When we
perform the δtk -variation, we keep the tic marks tk where they are, and change
the shape of the rubber band. The total δ-variation in a point q(tk) will then to
first order be the sum of these to effects. Alternatively, we may picture a plot
of qi vs t with a selected set of points qi(tk); the first term q̇i(tk)δtk moves qi(tk)

to qi(tk + δtk) on the original path, and
(
δqi(tk)

)
tk

moves it vertically (along

qi-axis) holding tk fixed. In this sense we may denote the first contribution by(
δqi(tk)

)
C

; this variation changes only the parametrization of the curve, not the
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curve itself. We will however only be concerned with the endpoints of the path,
and the notations δQ and δτ stands for general δ-variations of the path with
the only restrictions being at the endpoints. The purpose of this discussion has
been to clarify the variational concepts and notations used. Now we can get to
business and perform the general variation of the action S.

If we let

L (α; t) ≡ L
(
q(t, α), q̇(t, α); t

)
and

L (0; t) ≡ L
(
q(t, 0), q̇(t, 0); t

)
then the variation of the action S is carried out as

δS ≡ δ
ˆ t2

t1

L
(
q(t), q̇(t); t

)
dt ≡

ˆ t2+δt2

t1+δt1

L (α; t) dt−
ˆ t2

t1

L (0; t) dt (5)

We may rewrite equation (5) as

δS =

ˆ t2

t1

L (α; t) dt+

ˆ t2+δt2

t2

L (α; t) dt−
ˆ t1+δt1

t1

L (α; t) dt−
ˆ t2

t1

L (0; t) dt

=

ˆ t2

t1

(
L (α; t)−L (0, t)

)
dt+

ˆ t2+δt2

t2

L (α; t) dt−
ˆ t1+δt1

t1

L (α; t) dt

= δτ

ˆ t2

t1

L dt+

ˆ t2+δt2

t2

L (α; t) dt−
ˆ t1+δt1

t1

L (α; t) dt

where the first term is the variation in the action keeping the endtimes fixed.
To first order infinitesimals, the second and third integrals are

ˆ tk+δtk

tk

L (α; t) dt = L (α; tk) δtk

=

[
L (0; tk) +

(
∂L

∂α

)
0

α

]
δtk

= L (0; tk) δtk +

(
∂L

∂α

)
0
���α δtk

= L (tk) δtk

And thus we have

δS ≡ δ
ˆ t2

t1

L dt = δτ

ˆ t2

t1

L dt+ L (t2) δt2 −L (t1) δt1 (6)

Looking at equation (6) we see that the variation just performed is composed of
two parts. The first term is the δτ -variation of the action integral, and the other
two terms are the values of the unvaried Lagrangian at the endtimes multiplied
by the variations in the endtimes.
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Carrying out the δτ -variation of the action and integrating by parts, we get

ˆ t2

t1

(δL )τ dt =

ˆ t2

t1

(∂L

∂qi
(δqi)τ +

∂L

∂q̇i
(δq̇i)τ

)
dt

=

ˆ t2

t1

∂L

∂qi
(δqi)τ dt+

[
∂L

∂q̇i
(δqi)τ

]t2
t1

−
ˆ t2

t1

d

dt

(
∂L

∂q̇i

)
(δqi)τ dt

=

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+

[
∂L

∂q̇i
(δqi)τ

]t2
t1

and equation (6) then becomes

δS ≡ δ
ˆ t2

t1

L dt =

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+[pi (δqi)τ ]

t2
t1

+L (t2) δt2−L (t1) δt1

or

δS ≡ δ
ˆ t2

t1

L dt =

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+

[
pi (δqi)τ + L (t)δt

]t2
t1

(7)

It will be useful to write everything in the second term of equation (7) in terms
of the total δ-variation. From equation (4) we have(

δqi(tk)
)
τ

= δqi(tk)− q̇i(tk) δtk

and equation (7) then becomes

δS ≡ δ
ˆ t2

t1

L dt =

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+

[
piδqi − piq̇i δt+ L δt

]t2
t1

=

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+

[
piδqi −

(
piq̇i −L

)
δt
]t2
t1

Note that the parenthesis inside the second square-bracket is the Hamiltonian,
so that

δS ≡ δ
ˆ t2

t1

L dt =

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

]
(δqi)τ dt+

[
piδqi −H δt

]t2
t1

(8)

Equation (8) gives the variation of the action in varying the system path in-
finitesimally from the correct path, as well as the parametrization endtimes
t1, t2.
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3 Hamilton’s Principle

Hamilton’s principle states [1] that for the correct path q(t) between to fixed
endpoints Q ≡ (q1,q2) and fixed endtimes τ ≡ (t1, t2), the action functional S
has a stationary value to first order, i.e.

(
δS
)
Q,τ
≡ δQ,τ

ˆ t2

t1

L dt = 0. (9)

Here δQ,τ means that the variation is done holding both q1,q2 and t1, t2 fixed.
Explicitly, the variation then reads

δQ,τ

ˆ t2

t1

L dt =

ˆ t2

t1

(∂L

∂qi

(
δqi
)
Q,τ

+
∂L

∂q̇i

(
δq̇i
)
Q,τ

)
dt

=

ˆ t2

t1

∂L

∂qi

(
δqi
)
Q,τ

dt+

[
∂L

∂q̇i

(
δqi
)
Q,τ

]t2
t1

−
ˆ t2

t1

d

dt

(
∂L

∂q̇i

) (
δqi
)
Q,τ

dt

=

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

] (
δqi
)
Q,τ

dt+

[
∂L

∂q̇i �
���

(
δqi
)
Q,τ

]t2
t1

The last term vanishes since there is no variation at the endpoints;
(
δqi(tk)

)
Q,τ

=

0. Equation (9) then becomes

0 = δQ,τ

ˆ t2

t1

L dt =

ˆ t2

t1

[
∂L

∂qi
− d

dt

∂L

∂q̇i

] (
δqi
)
Q,τ

dt (10)

In order for equation (9) to hold for all possible independent variations
(
δqi
)
Q,τ

,
each term in the sum inside the integrand must vanish, and we obtain the Euler-
Lagrange equations

∂L

∂qi
− d

dt

∂L

∂q̇i
= 0 (11)

That is, for the correct path q(t), the n equations (11) are satisfied.

4 Maupertuis’ Principle

4.1 The General Principle

Hamilton’s principle gives the condition for which q(t) is the correct system
path in configuration space, leading to the Euler-Lagrange equations. Using
this result, we may write the more general variation of the action, equation (8),
as

δS ≡ δ
ˆ t2

t1

L dt =
[
piδqi −H δt

]t2
t1

(12)
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If we write the Lagrangian as

L = q̇ipi −H

then the action integral can be written

S =

ˆ t2

t1

(q̇ipi −H) dt =

ˆ t2

t1

piq̇i dt−
ˆ t2

t1

H dt = S0 −
ˆ t2

t1

H dt (13)

where S0 is the abbreviated action defined by equation (2).

Combining equations (12) and (13) we get an expression for the variation of the
abbreviated action:

δS0 ≡ δ
ˆ
C
pi dqi = δ

ˆ t2

t1

H dt+
[
piδqi −H δt

]t2
t1

(14)

Now we restrict our considerations to systems for which the Hamiltonian
is conserved. For this wide range of systems, we further restrict the variation
of the paths to the set of paths for which the Hamiltonian is conserved, and
such that δqi(tk) = 0 (tk = t1, t2). That is, the endpoints q1 and q2 of the
paths are fixed, but the path connecting the two points are varied, as well as
the times parametrizations q(t) (and hence the speed) describing the trajectory.
Note that a subset of these varied paths are identical to the true path taken by
the system, differing only by the velocity at which the system point traverses
the paths.

Denoting this restricted variation by δQ,H , equation (14) gives

(
δS0
)
Q,H

≡ δQ,H
ˆ
C
pi dqi = δQ,H

[
H (t2 − t1)

]
+
[
pi����(

δqi
)
Q,H

−H δt
]t2
t1

= H (δt2 − δt1)−H (δt2 − δt1)

= 0

and we arrive at Maupertuis’ principle:

(
δS0
)
Q,H

≡ δQ,H
ˆ
C
pi dqi = 0 (15)

That is, the variation in S0, subject to fixed endpoints and conserved Hamilto-
nian, is zero.

In other words, for systems with a conserved Hamiltonian, the true path C taken
by the system between two endpoint configurations is such that the abbreviated
action S0 has a stationary value to first order with respect to all infinitesimal
variations of the path consistent with the conservation of the Hamiltonian.
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4.2 Some (still very general) special cases

If the transformation equations ri = ri(q) that define the generalized coordinates
do not involve time explicitly, then the kinetic energy has the form

T =
1

2
Mjk(q) q̇j q̇k

where the coefficients Mjk are in general functions of the generalized coordinates,
and are symmetric:

Mjk = Mkj

If, in addition, the potential V = V (q) is not velocity dependent, then the Hamil-
tonian will automatically be the same as the total energy [1]:

H = T + V

which is then conserved, since by assumption H is conserved.

Furthermore,

pi =
∂L

∂q̇i
=
∂T

∂q̇i
+
�
��∂V
∂q̇i

=
1

2
Mjk

(
∂q̇j
∂q̇i

q̇k + q̇j
∂q̇k
∂q̇i

)
=

1

2
Mjkδij q̇k +

1

2
Mjk q̇jδik =

1

2
Mik q̇k +

1

2
Mjiq̇j

= Mij q̇j

and the abbreviated action becomes
ˆ
C
pi dqi =

ˆ t2

t1

piq̇i dt =

ˆ t2

t1

Mij q̇j q̇i dt =

ˆ t2

t1

2T dt

Hence, if the constraints are time-independent and the potential velocity-independent,
then Maupertuis’ principle becomes

(
δS0
)
Q,E

= δQ,E

ˆ t2

t1

2T dt = 0 (16)

That is, for the correct path C taken by the system point between two con-
figurations, the integral of the kinetic energy over time has a stationary value
subject to the conservation of energy.

If, further, there are no external forces on the system (e.g. a rigid body with
no net applied forces), then the kinetic energy T will be conserved (along with
H) and then equation (16) simplifies to(

δ(t2 − t1)
)
Q,E

= 0

which is a principle of least time (or, more correctly, the time elapsed has a
stationary value). This also means that a free particle takes the shortest path,
i.e. a straight line from point 1 to 2.
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5 Examples: Motion of a Single Particle

5.1 A Particle Moving in Three Dimensions

Consider the motion of a single particle, of mass m and position vector r in
three-dimensional space, in a potential V (r). In this case, the Hamiltonian is
the total energy,

H = T + V =
p2

2m
+ V (r) = E (conserved)

The abbreviated action takes the form

S0 =

ˆ
C
p • dr =

ˆ t2

t1

p • ṙ dt =

ˆ t2

t1

p2

m
dt

=

ˆ t2

t1

2T dt =

ˆ t2

t1

2(E − V ) dt = 2

ˆ t2

t1

E dt− 2

ˆ t2

t1

V dt

= 2E(t2 − t1)− 2

ˆ t2

t1

V
(
r(t)

)
dt

or

S0 =

ˆ t2

t1

p2

m
dt =

ˆ t2

t1

p v dt =

ˆ
C
p ds

where ds = v dt = |ṙ| dt is the differential displacement along the trajectory r(t).

Thus for the single particle the abbreviated action is given by

S0 =

ˆ
C
p ds =

ˆ t2

t1

2T dt = 2E(t2 − t1)− 2

ˆ t2

t1

V
(
r(t)

)
dt (17)

The ordinary action becomes, using equations (13) and (17),

S = S0 −
ˆ t2

t1

H dt = S0 − E(t2 − t1) =
1

2
S0 −

ˆ t2

t1

V
(
r(t)

)
dt (18)

Note that equation (18) relates the numerical values of S and S0, and that
the constraint of energy conservation has been used in the relation. Therefore
we should not use these expressions for S in Hamilton’s principle, where the
variation should be done without assuming energy conservation.
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5.2 Free Particle in Three Dimensions

Now consider the special case where the particle is free, so that V (r) = 0. Then
T = E is conserved along with p, and in this case the abbreviated action becomes,
using equation (17),

S0 = p s12 = 2T (t2 − t1) (19)

Where s12 =
´
C ds is the length of the curve C: r = r(t).

Maupertuis’ principle then states that, for the true path r(t), the variation of
S0 subject to energy conservation is zero:

0 =
(
δS0
)
Q,E

= p
(
δs12

)
Q,E

= 2T
(
δ(t2 − t1)

)
Q,E

(20)

Since V = 0, every path through space connecting points 1 and 2 will be con-
sistent with energy conservation as long as the speed of the particle remains
constant. For any given path, there are an infinite number of parametrizations
available; the particle may randomly switch direction along the curve without
stopping. For the true trajectory however, the variations in the total distance
travelled and total time of transit is zero:(

δs12
)
Q,E

=
(
δ(t2 − t1)

)
Q,E

= 0 (21)

Since, clearly, there is no upper limit on s12 or the time elapsed, these must be
minimized. We have thus arrived at the following obvious fact:

A free particle with non-zero momentum p moves between two points in such a
way that the total distance travelled is minimized.

or, equivalently,

A free particle with non-zero momentum p moves between two points in such a
way that the elapsed time is minimized.

with the immediate conclusion,

The motion of a particle, experiencing no net external forces, is a straight line.

This is just Newton’s first law, derived from Maupertuis’ principle.
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5.3 A Non-Free Particle in Two Dimensions

Now suppose that a potential V (r) is present. Then the kinetic energy is in gen-
eral not conserved, and the abbreviated action is given by (16). For simplicity,
let’s assume that the motion is confined to the xy-plane, and assume further
that the potential only depends on y, so that V = V (y). This could for example
correspond to a projectile being launched in a gravitational potential mgy. The
abbreviated action integral for a particle in two dimensions is written as

S0 =

ˆ
C
mv ds (22)

Now, since V = V (y), we may safely assume that the particle never changes
direction along the x-axis; this is equivalent to invoking Newton’s 2nd law for
the x-component of force, that is, 0 = ∂V

∂x = mẍ. If we don’t want our analysis to
be dependent on Newton, we may alternatively use the result from the preceding
section stating that a particle moving in one dimension in the absence of any
force will move with constant velocity along that dimension. In any case, we
assume that for each x there exists a unique y such that y = y(x) specifies the
path C. The infinitesimal displacement ds may then be expressed as

ds =
√
dx2 + dy2 =

√
1 + (dy/dx)2 dx

and by using E = mv2/2 + V (y), the speed v may be written

v =
√

2
m (E − V (y))

Substituting these expressions for ds and v into equation (22), the abbreviated
action integral then takes the form

S0 =
√

2m

ˆ x2

x1

√(
E − V (y)

)(
1 + (dy/dx)2

)
dx (23)

Maupertuis’ principle says that this integral has a stationary value for the true
path y(x) with respect to all varied paths y(x) having fixed endpoints y(x1)

and y(x2). The problem of finding this path then boils down to the standard
variational problem of finding the path y(x) that makes an integral of the form

ˆ x2

x1

f
(
y, y′(x), x

)
dx

has a stationary value. The solution to such a problem is given by the Euler-
Lagrange equation

d

dx

∂f

∂y′
− ∂f

∂y
= 0 (24)

These equations were derived in section 3 for the more general case involving
n coordinates qi and their time-derivatives, with the variable t instead of x. In
the present case we have

f(y, y′, x) =
√(

E − V (y)
)(

1 + (y′)2
)
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and equation (24) then becomes

0 =
d

dx

( 1

2f

(
E − V (y)

)
(2y′)

)
− 1

2f

(
− dV

dy

)(
1 + (y′)2

)
which, after differentiation and some algebra, reduces to

0 = 2
(
E − V (y)

)
y′′ +

(
1 + (y′)2

)dV
dy

(25)

Equation (25) is a differential equation for y(x), the path describing the trajec-
tory of the particle in the xy-plane. Notice that we only obtain the shape of the
path from Maupertuis’ principle, not the equation of motion itself, which would
specify the location (x, y) of the particle at time t. This shows the fundamental
difference between Maupertuis’ principle and Hamilton’s principle; the power of
Hamilton’s principle is that it predicts the motion of the particle as a function
of time.

To see that equation (25) truly is the correct path taken by the particle, we first
rewrite it as

−dV
dy

= 2
E − V

1 + (dy/dx)2
d2y

dx2
(26)

If x(t) is known, then y(t) is given by y(x(t)), with time-derivative

ẏ =
dy

dx
ẋ ⇒ dy

dx
= ẏ/ẋ

and

ÿ =
d2y

dx2
ẋ2 +

dy

dx �̈
x ⇒ d2y

dx2
= ÿ/ẋ2

Substituting these expressions into equation (26), and writing E − V = T =
1
2m(ẋ2 + ẏ2), we get

−dV
dy

=
m(ẋ2 + ẏ2)

1 + (ẏ/ẋ)2
1

ẋ2
ÿ

which simplifies to

−dV
dy

= mÿ (27)

Thus, Maupertuis’ principle of least (abbreviated) action predicts the trajectory
that satisfies Newton’s 2nd law, as it must. The path y(x) that makes the
abbreviated action integral have a stationary value is the path obtained from
Newton’s equations, which is the correct path taken by the particle.
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5.4 The Harmonic Oscillator

Consider the simple harmonic oscillation of a particle of mass m along the x-axis
in a potential V (x) = 1

2kx
2. The total energy is then given by

E =
p2x
2m

+
1

2
kx2

which may be written

x2

2E/k
+

p2x
2mE

= 1 (28)

Equation (28) is just the equation of an ellipse in phase space with semi-major
and -minor axes a =

√
2E/k and b =

√
2mE.

The abbreviated action is

S0 =

ˆ
C
px dx

which according to Maupertuis’ principle has a minimum value subject to equa-
tion (28). As discussed in section 5.2 for the case of the free particle, the only
possible varied paths subject to energy conservation are the unphysical situ-
ations where the particle gets sudden instantaneous reversals in momentum.
Since each such ”jump” will contribute a positive quantity to the abbreviated
action, the only stationary value is obtained for the path corresponding to con-
tinuous and smooth motion along x. If we choose endpoints x1 = x2 as a turning
point of the motion, the abbreviated action will then be the same as the area
of the ellipse traced out in phase space:

S0 =

ˆ
C
px dx = πab = π

√
4mE2

k
= 2π

√
m

k
E

Thus for the harmonic oscillator, the abbreviated action is minimum for the
true path x(t).

The application of Maupertuis’ principle to this problem will not yield any useful
information about the path, which is just a straight line between to points on the
x-axis. To find the equation of motion x(t), we instead use Hamilton’s principle
of least action,

δQ,τ

ˆ t2

t1

(T − V ) dt = 0

the solution to which is given by the Euler-Lagrange equations

0 =
d

dt

∂(T − V )

∂ẋ
− ∂(T − V )

∂x
= mẍ+ kx

giving the simple harmonic motion x(t), and satisfying equation (28).
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6 When is it Least?

As we have seen, both Maupertuis’ principle and Hamilton’s principle require
their respective versions of the action to have stationary values. In general this
means that the integrals can be minimized, maximized or have values corre-
sponding to a saddle point. What determines which of these three situations is
satisfied for a given system? For simplicity, we here consider only the motion of
a particle in one dimension in a potential V (x).

To find the nature of the stationary value for a given action requires examination
of the second variation δ2S, a calculation which is beyond the scope of this text.
Depending on the sign convention used, (δ2S)Q,τ > 0 corresponds to a local
minimum, and otherwise a saddle point; it will never be a maximum [3]. To
understand the conditions determining the nature of the stationary point, we
first need the concept of the kinetic focus, which may be defined formally for
the Hamilton action S in the following way [3]:

Consider a mechanical system with a true path C in configuration space. Let
the point P be an event on C, and the point Q be a later event on C. If Q is the
point closest to P for which there exists another true path C′ through P and
Q, with slightly different velocity at P , and such that the two paths coalesce in
the limit as the their velocities at P are made equal, then Q is called the kinetic
focus of P .

It can be shown that when no kinetic focus exists, the action S will be a minimum
[3]. If a kinetic focus exists, but the true path C terminates before reaching it,
then the action S is also a minimum. If a kinetic focus exists and the true path
C extends beyond it, then the stationary action S will be a saddle point. In
particular, one-dimensional system for which dV/dx ≤ 0 everywhere will have
minimum S. [3]

Analogous statements can be made about the Maupertuis’ action S0. [3]
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7 Conclusion

The two main formulations of what historically has been referred to as the
principle of least action are Maupertuis’ principle and Hamilton’s principle.
The former may be viewed as the ”old” version of the least action principle,
and the latter as the ”modern” version. The modern formulation of Maupertuis’
principle may be stated as

(δS0)Q,H = 0

where S0 is the abbreviated action, defined as

S0 =

ˆ
pi dqi

Hamilton’s principle may be stated as

(δS)Q,τ = 0

where S is the action, defined as

S =

ˆ t2

t1

L dt

In Maupertuis’ principle, (δS0)Q,H means that the variation is done subject to
fixed endpoints and conserved Hamiltonian. In Hamilton’s principle, (δS)Q,τ
means that the variation is done subject to fixed endpoints and endtimes.

In section 2, we began with a general variation of the action S with no constraints
at all. Then, by using Hamilton’s principle and performing the variation subject
to fixed endpoints Q and conserved Hamiltonian H, we derived Maupertuis’
principle. In section 5 we applied the derived results to the motion of a single
particle in some simple examples.

Hamilton’s principle leads to the equations of motion of the system, while Mau-
pertuis’ principle only determines the shape of the trajectories in space.

Despite the name least action, it is in both cases only required that it has a
stationary value. It is however often the case that it is minimized. When it is
not minimized, it will be at a saddle point; it is never maximized.
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