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Abstract

This paper briefly describes how the Hénon-Helies system exhibits chaos. 
First some subjects of chaos are presented Then the Hénon-Helies system is 
described and the subjects discussed are implemented on the system using 
numerically calculations.
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1 Introduction
Chaos is a relatively new subject in physics. Historically the idea has been that all problems have 
analytical solutions, it was only a matter of time and some bright ideas before the problems with no 
analytical solution at the time could be solved. But things changed when Poincaré proved that the 
three body problem had no analytical solution. There must be some other way that these unsolvable 
systems evolve under, and that is chaos.

The Hénon-Heiles system has been one of the most popular systems for demonstrating how chaos 
starts in a system. This is done by letting the energy of the motion approach the bounding energy of 
the potential sink surrounding the center of the potential. 

I Chaos
Mechanical systems are not always integrable, solutions to them can't be found analytically. This 
can be the case when the potentials  have a term that  couples  two equations  of motion,  so the 
problem isn't separable; a term like this is called a perturbation. If the perturbation is small,  the 
system might only shift a little in time from the analytical solution of the unperturbed system and 
the problem can be treated with perturbation theory. But if the perturbation can't be regarded as 
small, the motion may become very complex and in no way related to the unperturbed system. If 
these solutions are well behaved so that small changes in initial conditions bring about only small 
changes in the motion, the solutions are called regular or normal. There are also situations where 
small changes in the initial values result in completely different motion; these solutions are said to 
be chaotic.

2 Chaotic trajectories
Chaotic  motion  lies  somewhere  between  solutions  that  are  integrable  and  solutions  that  are 
completely  random.  The integrable  part  of  this  comes  from that  the  motions  are  deterministic 
solutions to deterministic equations, meaning that for each set of initial values there will be only 
one trajectory. The randomness of the motion comes from the sensitivity to initial conditions. If one 
trajectory has been found from a set of initial conditions, the solutions to another set close to it may 
have  no  similarities  to  each  other.  “Chaos  exhibits  extensive  randomness  tempered  by  some 
regularity” as it is described in [1].

The trajectories have three properties: They are mixing; they are dense quasi-periodic orbits; they 
are sensitive to initial conditions. Mixing means that if we have two arbitrarily small but nonzero 
regions that are in the domain of the motion and a trajectories passes through one of the regions, 
then it eventually pass through the other region. Orbits are quasi-periodic if they repeatedly move 
through the whole range of the domain without ever closing on themselves. Dense means that the 
orbit will eventually come through or arbitrarily close to every point in the range of the domain. 
And the part about sensitivity to initial conditions was mentioned in the previous paragraph.

3 The KAM theorem
Systems can often be expressed as an integrable part and a small interaction, a perturbation. Stated 
using the Hamiltonian:  H=H 0+ ΔH  where  H 0  is the integrable Hamiltonian and  Δ H  is the 
perturbation. For small perturbations the solutions should be similar to the unperturbed, while large 
perturbations should disturb the regularity of the solutions. A condition on when the regularity of 
the motion is preserved is the Kolmogrov-Arnold-Moser theorem:
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If the bounded motion of an integrable Hamiltonian H 0  is disturbed by a small perturbation, 
Δ H , that makes the total Hamiltonian,  H=H 0+ ΔH , nonintegrable and if two conditions are  
satisfied:

(a) the perturbation Δ H  is small,
(b) the frequencies ωi  of H 0  are incommensurate,

then the motion remains confined to an N-torus, except for a negligible set of initial conditions that  
result in a meandering trajectory in the energy surface.

So when the perturbation is regarded as small the orbits will be stable, only slightly altered in shape 
and will stay in the same region of phase space as those of the unperturbed. 

4 Liapunov exponents
As was previously stated,  a system is  chaotic  if  small  changes  in  initial  values  results  in  very 
different trajectories. If the motion is chaotic, the first sequences of orbits might just differ slightly, 
but they will move farther and farther away from each other. One way to quantitatively get a value 
on how chaotic a system is, is to measure how fast two orbits that initially are close to each other 
get separated as time passes. This is done with the Liapunov exponent:

s( t)=s0 eλt

Where s( t)  is the separation at time t and s0  is the initial separation. If the Liapunov exponent λ is 
greater than zero the motion is said to by chaotic. When the motion constructed by iteration t can be 
changed for n, where n is the number of iterations.

5 Poincaré maps
When a system gets  coupled  or  in  any other  way nonintegrable,  the trajectories  in  general  get 
complex and they are hard to study the N-dimensional phase space. By finding a way to sample the 
trajectories in intervals and in lower dimensions, interesting information about the motion could still 
be found. By using a constant of the motion the dimensionality of the space is lowered by one. One 
constant often used is the total energy, and the resulting space is called the energy hypersurface. 

In 4D phase space this would lead to dimensionality of three, but the trajectories are still complex 
and it can be hard to see if they have any regularity or not. One way to get the dimensionality down 
one more is to study the points where the trajectory passes through some plane through the 3-
dimensional hypersurface. This is known as a Poincaré section. The common choice is to use either 
the p y y  or the p x x plane. A orbit will pass through the Poincaré section twice on each revolution 
but only one of these points are taken into account. The resulting curves of points on the section is 
called a Poincaré map.

Fixed  orbits  (when transformed  the  certain  variables)  will  result  in  a  single  point  on  the  map 
because the orbit returns to the same point on each revolution, while a perturbed motion will result 
in multiple points, because the orbit is shifted over time due to the perturbation. 

One thing that can be seen in Poincaré maps that is an interesting sign of chaos is islands. Islands 
are regions of integrable phase space completely surrounded by chaotic regions.

6 Attractors
There are systems with trajectories that don't lie on stable paths when the motion starts, but evolve 
towards a certain point,  called a  fixed point, stable orbit,  limiting cycle or some other region of 
phase space. These areas are examples of attractors. The dimension of the attractor d A  is less then 
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the  dimension  of  the  phase  space  for  a  regular  attractor.  The  type  of  trajectories  that  evolves 
towards regular attractors have a negative Liapunov exponent, two orbits  that initially are separated 
will be closer as they approach the attractor. But there also exist other attractors that don't have 
integer dimension, they have fractal dimension and are called strange attractors, that are associated 
with chaos. An inherent property of fractals and objects with fractal dimension is self-similarity. 
Therefore chaotic systems tend to have self-similarity. One possible effect of this is when regions of 
a fractal are zoomed in on, the same shapes the non-zoomed image had will be seen in the new 
image.

One example  of how this  can appear  is  how the islands mentioned in the previous section are 
dispersed when one enters chaotic regions. They will have fractal hierarchy to them in form of a 
self-similarity at the border of chaos, but this similarity is not as regular as for constructed fractals.  

The fractal dimensions and the inherent self-similarities is a characteristic of chaos, and when some 
form of it is apparent in a dynamic system it can be a hint that the system is chaotic.  

II The Hénon-Heiles System

7 History
In the late 1950ties and early 60ties the interest in the existence of a third integral of motion for 
stars moving in the potential of the galaxy was born again. It was assumed that the potential had a 
symmetry axis and was time-independent, so that it in cylindrical coordinates (R,θ,z) would be a 
function of R and z. The system is in 6-dimensional phase space (R ,θ , z , Ṙ , θ̇ , ż) . 

There should (mathematically)  exist five integrals  I j  of motion that are constant for 6D phase 
space. The equations I j=C j  each results in a hypersurface in the 6-dimensional phase space and 
the trajectory is the intersection of these. But the integrals can be either isolating or nonisolating. 
The nonisolating integrals normally fill the phase space and give no restriction to the trajectory. 

At the time when Hénon and Heiles wrote their paper there were two known integrals: The total 
energy and the angular momentum per unit mass of the star:

I 1=U g (R , z )+
1
2
( Ṙ2

+ R2 θ̇2
+ ż2

)

I 2=R2 θ̇

It can be shown that at least two of the integrals in general are nonisolating. It was also assumed 
that the third integral also was nonisolating because no analytical solution had been found for it. But 
observations of star orbits near the sun and numerical computations of orbits sometimes behaved as 
if they had three isolating integrals.

8 The Potential and Hamiltonian

8.1 The potential

Hénon and Heiles set  out to see if they could find any proof of that  there should exist  a third 
isolating integral of motion. They did this by numerical computations, but they didn't hold too hard 
to  the  astronomical  meaning  of  the  problem:  They  only  demanded  that  the  potential  they 
investigated was axis symmetrical. They also assumed that the motion was confined to a plane and 
went  over  to  Cartesian  phase  space  (x , y , ẋ , ẏ)  (they  used  the  per  unit  mass  system  so  the 
momentum  where  just  p x= ẋ ,  p y= ẏ ).  The  total  energy  integral  of  motion  then  becomes: 
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I 1=V ( x , y)+
1
2
( ẋ2

+ ẏ2
) .

After some trials they chose to study the potential V ( x , y)=
1
2
( x2

+ y2
+ 2 x2 y –

2
3

y3
)  because it is 

analytically simple so that trajectories could be found easily but is still complicated enough so that 
the trajectories are non trivial. This potential is now known as the Hélion-Heiles potential. It can be 
seen as two harmonic oscillators that has been coupled by the perturbation terms x2 y – 2/3 y3 . 

The potential, that has been plotted in Fig 1.a, has some interesting features. For constant y, V has 
the form of parabola, V =( y+ 0.5) x2

+ k ( y)  (the parabola when y=0  is plotted in Fig 1.c). When 
y goes  y>−0.5→ y<−0.5  the potential  goes  as:  V ∝x2

+ k →V ∝−x2
+ k  so  at  y=−0.5  the 

potential is just a constant (this can be seen as the straight equipotential line at y =0.5 in fig 1.d). 
The  potential  has  a  stable  equilibrium  point  at  (x , y )=(0,0)  and  three  saddle  points: 
(x , y )=(0,1) ,(√ 3/8 ,−1/2) ,(−√ 3/8 ,−1/2) . The saddle points constitute the three corners of the 
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Figure  1:  a)  The 3D surface  of  the  potential  b)  The intensity  map of  the potential  with  some  
equipotential curves c) The potential as a function of x when y is constant=0 d) The potential as a 
function of y when x is constant=0



equipotential curve V = 1/6, that can be seen in Fig 1.b. This triangular area that is bounded by the 
equipotential curve with energy 1/6 is the area of interest in this project. When the energy of motion 
is lower than 1/6, and the initial position is inside this triangle the motion is bound inside it, and the 
interesting thing is what happens to the motion as the energy approaches 1/6. 

8.2 The Hamiltonian and Phase space

The  Hamiltonian  of  the  system  becomes  (remembering  that  momenta  in  this  case  are  just 
derivatives): 

H=
1
2
( ẋ2

+ ẏ2
)+

1
2
(x2

+ y2
+ 2 x2 y –

2
3

y3
)

and the equations of motion for this system are:

ṗ x=
∂H
∂ x

= ẍ=−x – 2xy

ṗ y=
∂H
∂ y

= ÿ=− y− x2
+ y2

The region of phase space that the orbits are bound to have a special appearance. It's shape is known 
int the x,y-plane for different energies from the intensity plot Figure 2.b), it goes from a circle to a 
triangle. In the ẏ , y - and ẋ , x   plane it has the equations: 

ẏ=±√2 E+ 2/3y3 – y2 ẋ=±√2E− x2

These surfaces has the form of a nut, it is shaper in the corners when E is close to 1/6 and gets 
smoother and more spherical as E goes to 0.

9 Numerical calculations

9.1 Trajectories

There are four variables of interest (x , y , ẋ , ẏ) . In the numerical calculation the values of these in 
a future step will be found using known values of them, this is done by some ODE solver.

What is left now is to find the initial values. There are several ways to do this, but one common, and 
the one used in this project is as follows: Set x=0 , use y, ẏ  and the energy E as parameters. Then 
ẋ  can be found using the conservation of energy:

E=
1
2
( ẋ2+ ẏ2)+

1
2
(x2+ y2+ 2 x2 y –

2
3

y3) ⇔ ẋ=√ 2 E− ẏ2− y2+
2
3

y3

So for  each numerical  calculation  the set  of initial  values  ( y , ẏ , E )  will  be needed,  and now 
everything that is needed to calculate the trajectories is known. This way of choosing the initial 
conditions  is  beneficial  when the aim is  to create  Poincare maps in  the  y , ẏ -plane.  When the 
Poincare maps are created the user can chose a point of interest  in the  y , ẏ -plane and see the 
region of y , ẏ  phase space the trajectory is bounded to.

9.2 Poincare maps

The maps are obtained by finding where the trajectories goes through the x-plane and have positive 
momentum in the y-direction (remember that we in Poincare maps only are interested in one of the 
intersections). When the ODE solver has solved the equations it returns a matrix where the columns 
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are  the  four  variables  of  the  problem for  each  step  of  the  numerical  calculation.  To  find  the 
intersection points with the y, ẏ  plane where x=0  the column with the x-values where searched 
through for  n where:  xn< 0  and xn+ 1> 0 , and then calculating the  y and  ẏ  for the intersection 
using:

y=
yn+ yn+ 1

2
ẏ=

ẏn+ ẏ n+ 1

2

9.3 Liapunov exponent

Here the interest was to get a quantitative measure on how chaotic the system is as the energy of the 
motion approaches the limiting case of 1/6. The idea is simple, chose a point in phase space and a 
point close to it. Then solve the ODE for the two initial conditions the points give. Calculate the 
separation in phase space at t=0 and when the at t=maxT, the total integration time. Then solve for 
the Liapunov exponent: 

λ=
ln (s (t))– ln (s0)

t

Use the calculated distances and take t to be maxT.

A convenient way to chose the two points when the goal is to study chaos is to pick them from a 
Poincaré map. And because it is the magnitude of chaos in an area in phase space that is of interest 
it is good if both points is in the same type of region (a bad thing would be if one point was in a 
integrable region and the other was in a chaotic). Therefore the method used in this paper was to use 
the same ẏ , y  value for both points, and then change the x of one of the points by a small d relative 
the other (hoping that we don't enter a region of different magnitude of chaos when we move the 
small d in x) . Both orbits have the same energy and the ẋ  is calculated in the same manner as for 
the trajectories.

10 Visualizing chaos
In this part the four of the subjects of chaos introduced in Part I are shown by plotting them from 
numerical calculations.

10.1 Poincaré maps

Four different Poincaré maps ware made and are presented in Figure 2. The first plot, Figure 2.a) is 
made with a very low energy 1% of the bounding energy of the region. Even at this low energy the 
perturbation still has a noticeable effect as the orbits has moved in phase space, but the interesting 
thing is how they have moved. There are three curves each from different initial conditions. One of 
them have closed on itself  while the other still  are open.  That is because on this low level  the 
perturbation changes the orbit so the neighboring points are subsequent of each other. Figure  2 
shows a close picture  of the orbit  for time 0 to 100. Figure  2.b) is  made of 8 different  initial 
conditions, each condition is a curve. The energy in Figure 2.b) is high enough that each turn of the 
orbits can move further away from the previous point, two neighboring points don't need to be of 
subsequent turns, the curves are built up more randomly. But each set of initial conditions are still 
bound to a curve. Figure 2.c) There are bounded orbits but also regions of chaos and some islands 
can be seen. In the final plot figure 2.d) we are at the bounding energy, there are only a few islands 
of non chaotic phase space. 
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10.2 The KAM theorem

The KAM theorem states that if a perturbation is small enough so that there are still some regularity 
to the motion of the system then the motion will be confined to a torus. So it might be interesting to 
investigate some trajectories for different energies and see if it is possible to see this geometrical 
description of the difference in regular orbits and chaotic orbits. 

In figure 3.a) a trajectory with initial point in an integrable part of phase space is plotted. Instead of 
filling out the whole domain in phase space (the in section 7 mentioned “nut shaped” region),  the 
trajectory stays on a 2-torus. By using the KAM theorem this orbit can be said to be from a system 
that has a  relatively small perturbation. It is important to remember that this torus is not the whole 
torus of motion, but the energy hypersurface of it in ( y , x , ẏ ) -3D phase space.
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Figure 2: Poincaré maps created for four different energies:  a) E=0.001667  b) E=0.0833 
c) E = 0.125  d) E=0.16666



Figure 3.b) is from a chaotic part of phase space. The trajectory is not confined to a torus and the 
KAM theory states that this is a chaotic trajectory. One can see that it appears to have dense quasi 
periodicity: It fills out the entire range of the domain, the nut-shell.

It is somewhat easier to grasp the meaning of the Poincaré maps when one have seen these plots, it's 
easy to see how the intersection of the trajectories in these three plots corresponds to the different 
kind of Poincaré maps in Figure 3a)-d).   

10.3 The Liapunov exponent

The first idea was to  calculate the Liapunov exponent,  λ, for different energies at some points in 
phase space using the method briefly described in section 9.3. This idea is represented in figure 4. 
The  blue  and  green  dots  are  the  start  points  of  the  blue  and  green  orbit,  the  trajectories  are 

calculated  and  end  at  the  two  black  dots.  This 
would be done for some points in phase space for 
different  energies  and  to  get  a  table  of  λ.  The 
hypothesis was that λ also would depend on time, 
because the orbits tend to drift apart over time, so 
different integration times would be used.

But this method ran into problems. The hypothesis 
that  λ depended on time proved to be true, but not 
in the way that was expected. The hypothesis was 
that  λ would increase with time, but it seamed to 

change randomly. In Table 1, where  λ has been calculated for motion with Energy ≈ 1/12, λ goes 
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Figure 4: A plot of two orbits with similar  
initial conditions.

Integration time 50 80 100

λ -2,72 0,21 -0,31

Table 1: Values of  λ obtained for different  
integration times.

Figure 3 Two trajectories with energies a) E=1/8 b) E=1/6 in ( y , x , ẏ )  3D phase space 



from to be negative, to positive and back to negative. In an attempt to figure out what was going on 
a plot was made of  λ as a function of the total integration time and this is presented in Figure 5.

λ appears to be vary randomly but some things can be noted: For low integration time, λ tends to be 
more negative then positive and as the integration times get larger λ tends to be more positive. It is 
also possible to see some regularity to the peaks: At about T=(25, 80, 150, 200) there are areas of 
some sharp positive peaks and in between are areas of of negative peaks.

To investigate this further a series of plots of the same point used to obtain Figure 5 were made at 
different energies,  the result  is plotted in Figure  6. The areas in Figure  5 whit  the sharp peaks 
appears to correspond to the packages of sharp peaks in Fig. 6 a), which is the plot with the lowest 
energy. This orbit seem to have a lot of regularity to it, or rather the distance between the two orbits 
seem to have a periodic dependence. When the energy increases the randomness starts to set in, the 
final distance between the points is not as periodic as it was for the lower. But still some tempering 
of the regularities of the low energy orbits can be seen in the higher energies orbits, (Figure 5 and 
6b)-c)), but this regularities fade of with the energy increases. The hypothesis that the measure of 
chaos in the trajectory would increase with time can be seen in all graphs, they all tend to go from 
negative to positive. This transition goes faster for higher energies.

The plots of Figure 6 are from the initial point in phase space about ( y=0.01 , ẏ=0) , this can be 
seen in figure 3 to be a relatively non chaotic part of phase space, first at the limiting energy E = 1/6 
the point is in a chaotic region. To see the difference, a similar plot like Figure 6 was made of the 
points  ( y=0.2 , ẏ=0) , ( y=−0.1 , ẏ=0.1)  at the limiting energy.  The motivation is that the first 
point appears to be one of the more stable points and the later one of the more chaotic. In the figure 
it is clear that the second orbit is more chaotic with no areas that are chaotically, while the first orbit 
have some regions where it behaves regular.

It was also tested how changing d, the initial separation of the orbits effected the values. This only 
shifted the amplitudes but the overall shape of the λ-time plots were the same. 

Liapunov exponents when used for a single integral  time might  be a bad way to measure how 
chaotic a region of phase space is in the  Hénon-Helies system it is more advisable to look at the 
entire λ-time curve to see what actually happens.

As a summary it can be said that the Liapunov exponent depended on time. It can also be stated that 
trajectories  have  a  higher  measure  of  chaos  for  higher  energies.  The result  from the  Liapunov 
exponent is consistent with the results from the Poincaré maps. 
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Figure 5: Plot of  λ as a function of time at the point ( y= .00 , ẏ=0.01)  at energy E=1/8
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Figure 6: The Liapunov exponent as a function of time for the point ( y=0.01 , ẏ=0.01)  for  
different energies a) E = 0.001 b) E = 0.125 c) E = 0.1666
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Figure 7: Plots from the points a) ( y= .00 , ẏ=0.0) , b) ( y=− .00, ẏ=0.1)  both for the energy E 
= 0.1666 



10.4 Self similarities

Here  the  chaotic  characteristics  of  self  similarities  are  visualized.  The  first  is  the  in  section  6 
mentioned regularities to the islands of integrable regions. This was done by plotting the Poincaré 
map  for  energy  E  =  1/8,  and  first  taking  a  chaotic  region  and  then  adding  some  integrable 
trajectories. The result is presented in Figure 8.

The second example is another self similarity that don't have to do with the trajectory of a single 
orbit  but the difference between two, which was stumbled upon when the Liapunov plots were 
made for low energies. When Figure 6 a) is studied one sees that it has two things to it: One major 
shape, the shape that goes from negative to zero as 1/t, the other is the oscillation around the first 
shape. Because the Liapunov exponent is calculated by dividing the difference in the logarithms of 
the  initial  and  ending  distances  between  the  orbits  the  amplitude  will  die  out  with  time.  To 
investigate the shape of the actual difference of the logarithms, the division with the total time was 
excluded leading to a different Liapunov exponent: λ '=ln(s (t))– ln( s0) . This was plotted for the 
integration times 10000 and 100000 with energy E = 0.005. The result is presented in Figure 9.

The behavior of the distances between two orbits initially closely separated appears to have self 
similarities to it. It can also be seen that for 20000 units of time the trajectories enters regions where 
they are nonchaotic. It appears that the fact that the trajectory is chaotic and that chaotic system 
have inherent  fractal  behavior  could be used to  get  some information  of when the system will 
behave regularly.
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Figure 8: Some self semilarites in the Poincaré map for energy E = 1/8
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Appendix
Source Code:

Orbits.py – Renders 2D orbits initial conditions in the Hénon-Helies potentia

Orbits3D.py – Renders 3D orbits for initial conditions in the Hénon-Helies potential

Poincare_Map.py – Renders a poincare map for a initial condition

Liapunov.py – Calulates the Liapunov exponents for different points in phase space

Liapunov_Plot.py – Plots two initially close orbits and calculates the Liapinov exponent

Liapunov_Time_plotter.py – Plots the Liapunov exponent over time
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Figure 9: λ as a function of time for the energy E=0.005 and the two integration times a) t=10000 
and b) 100000
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