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Abstract

This paper briefly describes how the Hénon-Helies system exhibits chaos.
First some subjects of chaos are presented Then the Hénon-Helies system is
described and the subjects discussed are implemented on the system using
numerically calculations.
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1 Introduction

Chaos is a relatively new subject in physics. Historically the idea has been that all problems have
analytical solutions, it was only a matter of time and some bright ideas before the problems with no
analytical solution at the time could be solved. But things changed when Poincaré proved that the
three body problem had no analytical solution. There must be some other way that these unsolvable
systems evolve under, and that is chaos.

The Hénon-Heiles system has been one of the most popular systems for demonstrating how chaos
starts in a system. This is done by letting the energy of the motion approach the bounding energy of
the potential sink surrounding the center of the potential.

| Chaos

Mechanical systems are not always integrable, solutions to them can't be found analytically. This
can be the case when the potentials have a term that couples two equations of motion, so the
problem isn't separable; a term like this is called a perturbation. If the perturbation is small, the
system might only shift a little in time from the analytical solution of the unperturbed system and
the problem can be treated with perturbation theory. But if the perturbation can't be regarded as
small, the motion may become very complex and in no way related to the unperturbed system. If
these solutions are well behaved so that small changes in initial conditions bring about only small
changes in the motion, the solutions are called regular or normal. There are also situations where
small changes in the initial values result in completely different motion; these solutions are said to
be chaotic.

2 Chaotic trajectories

Chaotic motion lies somewhere between solutions that are integrable and solutions that are
completely random. The integrable part of this comes from that the motions are deterministic
solutions to deterministic equations, meaning that for each set of initial values there will be only
one trajectory. The randomness of the motion comes from the sensitivity to initial conditions. If one
trajectory has been found from a set of initial conditions, the solutions to another set close to it may
have no similarities to each other. “Chaos exhibits extensive randomness tempered by some
regularity” as it is described in [1].

The trajectories have three properties: They are mixing; they are dense quasi-periodic orbits; they
are sensitive to initial conditions. Mixing means that if we have two arbitrarily small but nonzero
regions that are in the domain of the motion and a trajectories passes through one of the regions,
then it eventually pass through the other region. Orbits are quasi-periodic if they repeatedly move
through the whole range of the domain without ever closing on themselves. Dense means that the
orbit will eventually come through or arbitrarily close to every point in the range of the domain.
And the part about sensitivity to initial conditions was mentioned in the previous paragraph.

3 The KAM theorem

Systems can often be expressed as an integrable part and a small interaction, a perturbation. Stated
using the Hamiltonian: H=H+ AH where H, is the integrable Hamiltonian and A H is the
perturbation. For small perturbations the solutions should be similar to the unperturbed, while large
perturbations should disturb the regularity of the solutions. A condition on when the regularity of
the motion is preserved is the Kolmogrov-Arnold-Moser theorem:



If the bounded motion of an integrable Hamiltonian H , is disturbed by a small perturbation,
A H, that makes the total Hamiltonian, H=H + AH | nonintegrable and if two conditions are
satisfied:

(a) the perturbation A H is small,

(b) the frequencies W, of Hp are incommensurate,
then the motion remains confined to an N-torus, except for a negligible set of initial conditions that
result in a meandering trajectory in the energy surface.

So when the perturbation is regarded as small the orbits will be stable, only slightly altered in shape
and will stay in the same region of phase space as those of the unperturbed.

4 Liapunov exponents

As was previously stated, a system is chaotic if small changes in initial values results in very
different trajectories. If the motion is chaotic, the first sequences of orbits might just differ slightly,
but they will move farther and farther away from each other. One way to quantitatively get a value
on how chaotic a system is, is to measure how fast two orbits that initially are close to each other
get separated as time passes. This is done with the Liapunov exponent:

s(t)=s,eM

Where s(t) is the separation at time 7 and 5, is the initial separation. If the Liapunov exponent A is
greater than zero the motion is said to by chaotic. When the motion constructed by iteration ¢ can be
changed for n, where 7 is the number of iterations.

5 Poincaré maps

When a system gets coupled or in any other way nonintegrable, the trajectories in general get
complex and they are hard to study the N-dimensional phase space. By finding a way to sample the
trajectories in intervals and in lower dimensions, interesting information about the motion could still
be found. By using a constant of the motion the dimensionality of the space is lowered by one. One
constant often used is the total energy, and the resulting space is called the energy hypersurface.

In 4D phase space this would lead to dimensionality of three, but the trajectories are still complex
and it can be hard to see if they have any regularity or not. One way to get the dimensionality down
one more is to study the points where the trajectory passes through some plane through the 3-
dimensional hypersurface. This is known as a Poincaré section. The common choice is to use either
the p,» orthe p, X plane. A orbit will pass through the Poincaré section twice on each revolution
but only one of these points are taken into account. The resulting curves of points on the section is
called a Poincar¢ map.

Fixed orbits (when transformed the certain variables) will result in a single point on the map
because the orbit returns to the same point on each revolution, while a perturbed motion will result
in multiple points, because the orbit is shifted over time due to the perturbation.

One thing that can be seen in Poincaré maps that is an interesting sign of chaos is islands. Islands
are regions of integrable phase space completely surrounded by chaotic regions.

6 Attractors

There are systems with trajectories that don't lie on stable paths when the motion starts, but evolve
towards a certain point, called a fixed point, stable orbit, /imiting cycle or some other region of
phase space. These areas are examples of attractors. The dimension of the attractor ¢, is less then
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the dimension of the phase space for a regular attractor. The type of trajectories that evolves
towards regular attractors have a negative Liapunov exponent, two orbits that initially are separated
will be closer as they approach the attractor. But there also exist other attractors that don't have
integer dimension, they have fractal dimension and are called strange attractors, that are associated
with chaos. An inherent property of fractals and objects with fractal dimension is self-similarity.
Therefore chaotic systems tend to have self-similarity. One possible effect of this is when regions of
a fractal are zoomed in on, the same shapes the non-zoomed image had will be seen in the new
image.

One example of how this can appear is how the islands mentioned in the previous section are
dispersed when one enters chaotic regions. They will have fractal hierarchy to them in form of a
self-similarity at the border of chaos, but this similarity is not as regular as for constructed fractals.

The fractal dimensions and the inherent self-similarities is a characteristic of chaos, and when some
form of it is apparent in a dynamic system it can be a hint that the system is chaotic.

Il The Hénon-Heiles System

7 History

In the late 1950ties and early 60ties the interest in the existence of a third integral of motion for
stars moving in the potential of the galaxy was born again. It was assumed that the potential had a
symmetry axis and was time-independent, so that it in cylindrical coordinates (R,0,z) would be a
function of R and z. The system is in 6-dimensional phase space (R,8,z,R,0,z) .

There should (mathematically) exist five integrals /; of motion that are constant for 6D phase
space. The equations /,=C; each results in a hypersurface in the 6-dimensional phase space and
the trajectory is the intersection of these. But the integrals can be either isolating or nonisolating.
The nonisolating integrals normally fill the phase space and give no restriction to the trajectory.

At the time when Hénon and Heiles wrote their paper there were two known integrals: The total
energy and the angular momentum per unit mass of the star:

1,=U,(R, z)+ %(R% R 6+ %)
1,=R*®

It can be shown that at least two of the integrals in general are nonisolating. It was also assumed
that the third integral also was nonisolating because no analytical solution had been found for it. But
observations of star orbits near the sun and numerical computations of orbits sometimes behaved as
if they had three isolating integrals.

8 The Potential and Hamiltonian

8.1 The potential

Hénon and Heiles set out to see if they could find any proof of that there should exist a third
isolating integral of motion. They did this by numerical computations, but they didn't hold too hard
to the astronomical meaning of the problem: They only demanded that the potential they
investigated was axis symmetrical. They also assumed that the motion was confined to a plane and
went over to Cartesian phase space (x,y,X,¥) (they used the per unit mass system so the
momentum where just p,=X%, p,=p). The total energy integral of motion then becomes:



L=V (x, ph 2 (54 57).

. ) 1 2 ..
After some trials they chose to study the potential V(x, y)=?(x2+ yv+ Yy y-3 ¥’) because it is

analytically simple so that trajectories could be found easily but is still complicated enough so that
the trajectories are non trivial. This potential is now known as the Hélion-Heiles potential. It can be
seen as two harmonic oscillators that has been coupled by the perturbation terms x*y—2/3 3" .

The potential, that has been plotted in Fig 1.a, has some interesting features. For constant y, V" has
the form of parabola, ¥ =(y+ 0.5)x’+ k(y) (the parabola when y=0 is plotted in Fig 1.c). When
y goes y>—0.5>y<—0.5 the potential goes as: Vocx’+k >V oc—x’+k so at y=—0.5 the
potential is just a constant (this can be seen as the straight equipotential line at y =0.5 in fig 1.d).
The potential has a stable equilibrium point at (x,y)=(+,*) and three saddle points:
(x,y)=(0,1),(y3/8,—1/2),(—/3/8,—1/2) . The saddle points constitute the three corners of the

Intensity map and some equipotential curves

The Henon Heiles potential
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Figure 1: a) The 3D surface of the potential b) The intensity map of the potential with some
equipotential curves c) The potential as a function of x when y is constant=0 d) The potential as a
function of y when x is constant=(0



equipotential curve V = 1/6, that can be seen in Fig 1.b. This triangular area that is bounded by the
equipotential curve with energy 1/6 is the area of interest in this project. When the energy of motion
is lower than 1/6, and the initial position is inside this triangle the motion is bound inside it, and the
interesting thing is what happens to the motion as the energy approaches 1/6.

8.2 The Hamiltonian and Phase space

The Hamiltonian of the system becomes (remembering that momenta in this case are just
derivatives):

H=%(x2+ 77)+ %(x2+ V' 2x2y7%yr)

and the equations of motion for this system are:

. _OH . v

P = =k=—x-Yxy
0x

.=6H=..=_ AT

By=G, =h="y y

The region of phase space that the orbits are bound to have a special appearance. It's shape is known
int the x,y-plane for different energies from the intensity plot Figure 2.b), it goes from a circle to a
triangle. Inthe 3, y-and Xx,x plane it has the equations:

y=+V2E+2/3y’—)®  i=+\2E—x’

These surfaces has the form of a nut, it is shaper in the corners when E is close to 1/6 and gets
smoother and more spherical as E goes to 0.

9 Numerical calculations

9.1 Trajectories

There are four variables of interest (x V. X, )'/) . In the numerical calculation the values of these in
a future step will be found using known values of them, this is done by some ODE solver.

What is left now is to find the initial values. There are several ways to do this, but one common, and
the one used in this project is as follows: Set x=0, use y, » and the energy £ as parameters. Then
X can be found using the conservation of energy:

E=%(>‘¢‘+ i)+ %(xv+ y'+ *ny—;yr) o k= YE-j -y ;yy

So for each numerical calculation the set of initial values ( v, y, E) will be needed, and now
everything that is needed to calculate the trajectories is known. This way of choosing the initial
conditions is beneficial when the aim is to create Poincare maps in the y, y -plane. When the
Poincare maps are created the user can chose a point of interest in the »,y -plane and see the
region of y, » phase space the trajectory is bounded to.

9.2 Poincare maps

The maps are obtained by finding where the trajectories goes through the x-plane and have positive
momentum in the y-direction (remember that we in Poincare maps only are interested in one of the
intersections). When the ODE solver has solved the equations it returns a matrix where the columns



are the four variables of the problem for each step of the numerical calculation. To find the
intersection points with the y, y plane where x=0 the column with the x-values where searched
through for » where: x,<* and x,.,> *, and then calculating the y and ) for the intersection
using:

yn+yn+1 . yn+yn+l

9.3 Liapunov exponent

Here the interest was to get a quantitative measure on how chaotic the system is as the energy of the
motion approaches the limiting case of 1/6. The idea is simple, chose a point in phase space and a
point close to it. Then solve the ODE for the two initial conditions the points give. Calculate the
separation in phase space at t=0 and when the at t=maxT, the total integration time. Then solve for
the Liapunov exponent:

=1n(s(t))—ln(so)
t

A

Use the calculated distances and take t to be maxT.

A convenient way to chose the two points when the goal is to study chaos is to pick them from a
Poincaré map. And because it is the magnitude of chaos in an area in phase space that is of interest
it is good if both points is in the same type of region (a bad thing would be if one point was in a
integrable region and the other was in a chaotic). Therefore the method used in this paper was to use
the same ), y value for both points, and then change the x of one of the points by a small d relative
the other (hoping that we don't enter a region of different magnitude of chaos when we move the
small d in x) . Both orbits have the same energy and the X is calculated in the same manner as for
the trajectories.

10 Visualizing chaos

In this part the four of the subjects of chaos introduced in Part I are shown by plotting them from
numerical calculations.

10.1 Poincaré maps

Four different Poincaré maps ware made and are presented in Figure 2. The first plot, Figure 2.a) is
made with a very low energy 1% of the bounding energy of the region. Even at this low energy the
perturbation still has a noticeable effect as the orbits has moved in phase space, but the interesting
thing is how they have moved. There are three curves each from different initial conditions. One of
them have closed on itself while the other still are open. That is because on this low level the
perturbation changes the orbit so the neighboring points are subsequent of each other. Figure 2
shows a close picture of the orbit for time 0 to 100. Figure 2.b) is made of 8 different initial
conditions, each condition is a curve. The energy in Figure 2.b) is high enough that each turn of the
orbits can move further away from the previous point, two neighboring points don't need to be of
subsequent turns, the curves are built up more randomly. But each set of initial conditions are still
bound to a curve. Figure 2.c) There are bounded orbits but also regions of chaos and some islands
can be seen. In the final plot figure 2.d) we are at the bounding energy, there are only a few islands
of non chaotic phase space.
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Figure 2: Poincaré maps created for four different energies: a) E=0.001667 b) E=0.0833
c)E=0.125 d) E=0.16666

10.2 The KAM theorem

The KAM theorem states that if a perturbation is small enough so that there are still some regularity
to the motion of the system then the motion will be confined to a torus. So it might be interesting to
investigate some trajectories for different energies and see if it is possible to see this geometrical

description of the difference in regular orbits and chaotic orbits.

In figure 3.a) a trajectory with initial point in an integrable part of phase space is plotted. Instead of
filling out the whole domain in phase space (the in section 7 mentioned “nut shaped” region), the
trajectory stays on a 2-torus. By using the KAM theorem this orbit can be said to be from a system
that has a relatively small perturbation. It is important to remember that this torus is not the whole

torus of motion, but the energy hypersurface of it in (y, x, ) -3D phase space.



Perturbed nonchaotic trajectory Chaotic orbit
E=0.1250 E=0.1666

Figure 3 Two trajectories with energies a) E=1/8 b) E=1/6 in (y,x,7) 3D phase space

Figure 3.b) is from a chaotic part of phase space. The trajectory is not confined to a torus and the
KAM theory states that this is a chaotic trajectory. One can see that it appears to have dense quasi
periodicity: It fills out the entire range of the domain, the nut-shell.

It is somewhat easier to grasp the meaning of the Poincaré maps when one have seen these plots, it's
easy to see how the intersection of the trajectories in these three plots corresponds to the different
kind of Poincaré¢ maps in Figure 3a)-d).

10.3 The Liapunov exponent

The first idea was to calculate the Liapunov exponent, A, for different energies at some points in
phase space using the method briefly described in section 9.3. This idea is represented in figure 4.
The blue and green dots are the start points of the blue and green orbit, the trajectories are
calculated and end at the two black dots. This
would be done for some points in phase space for

(‘E=','0.0833', ' Lambda= "', '-0.162832941995") " .
0.4 ' ' ' ' ' ' different energies and to get a table of A. The
03l | hypothesis was that A also would depend on time,
because the orbits tend to drift apart over time, so
0.2} | . ! S
different integration times would be used.
0.1} . . . .
But this method ran into problems. The hypothesis
M 80y l that A depended on time proved to be true, but not
01l | in the way that was expected. The hypothesis was
0ol | that A would increase with time, but it seamed to
-0.3} 1 Integration time | 50 80 100
032 =03 -02 —01 00 01 02 03 04 A -2,72 0,21 -0,31
X
Figure 4: A plot of two orbits with similar Table 1: Values of A obtained for different
initial conditions. integration times.

change randomly. In Table 1, where A has been calculated for motion with Energy = 1/12, A goes
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from to be negative, to positive and back to negative. In an attempt to figure out what was going on
a plot was made of A as a function of the total integration time and this is presented in Figure 5.

Lo E=0.08333 x0=0.0 y0=0.0 py0=0.01

05} .
0.0 ij i %M ,iﬁ ?&VVWWWMMYVWVVUN{wuvwhgwmmﬁﬁrhwhﬁﬁprw
e |
—1.0}

=15 .
—2.0 .
251 .
-3.0

Lambda

o l(ll() 2CIIO 360 4CIIO 500
Figure 5: Plot of A as a function of time at the point (y=[00, y=0.01) at energy E=1/8

A appears to be vary randomly but some things can be noted: For low integration time, A tends to be
more negative then positive and as the integration times get larger A tends to be more positive. It is
also possible to see some regularity to the peaks: At about T=(25, 80, 150, 200) there are areas of
some sharp positive peaks and in between are areas of of negative peaks.

To investigate this further a series of plots of the same point used to obtain Figure 5 were made at
different energies, the result is plotted in Figure 6. The areas in Figure 5 whit the sharp peaks
appears to correspond to the packages of sharp peaks in Fig. 6 a), which is the plot with the lowest
energy. This orbit seem to have a lot of regularity to it, or rather the distance between the two orbits
seem to have a periodic dependence. When the energy increases the randomness starts to set in, the
final distance between the points is not as periodic as it was for the lower. But still some tempering
of the regularities of the low energy orbits can be seen in the higher energies orbits, (Figure 5 and
6b)-c)), but this regularities fade of with the energy increases. The hypothesis that the measure of
chaos in the trajectory would increase with time can be seen in all graphs, they all tend to go from
negative to positive. This transition goes faster for higher energies.

The plots of Figure 6 are from the initial point in phase space about (y=0.01, y="), this can be
seen in figure 3 to be a relatively non chaotic part of phase space, first at the limiting energy E = 1/6
the point is in a chaotic region. To see the difference, a similar plot like Figure 6 was made of the
points (y='.Y,y=+),(y=—10, 5= ) at the limiting energy. The motivation is that the first
point appears to be one of the more stable points and the later one of the more chaotic. In the figure
it is clear that the second orbit is more chaotic with no areas that are chaotically, while the first orbit
have some regions where it behaves regular.

It was also tested how changing d, the initial separation of the orbits effected the values. This only
shifted the amplitudes but the overall shape of the A-time plots were the same.

Liapunov exponents when used for a single integral time might be a bad way to measure how
chaotic a region of phase space is in the Hénon-Helies system it is more advisable to look at the
entire A-time curve to see what actually happens.

As a summary it can be said that the Liapunov exponent depended on time. It can also be stated that
trajectories have a higher measure of chaos for higher energies. The result from the Liapunov
exponent is consistent with the results from the Poincaré maps.
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Figure 6: The Liapunov exponent as a function of time for the point (y=0.01,7=0.01) for
different energies a) E = 0.001 b) E = 0.125 c) E = 0.1666
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Figure 7: Plots from the points a) (y=|:|.|:|, j/=0.0) ,b) (y=—|]|:|, y=0.1) both for the energy E
=0.1666

13



10.4 Self similarities

Here the chaotic characteristics of self similarities are visualized. The first is the in section 6
mentioned regularities to the islands of integrable regions. This was done by plotting the Poincaré
map for energy E = 1/8, and first taking a chaotic region and then adding some integrable
trajectories. The result is presented in Figure 8.

ergy=0.125

o .

dy/dt

Figure 8: Some self semilarites in the Poincaré map for energy E = 1/8

The second example is another self similarity that don't have to do with the trajectory of a single
orbit but the difference between two, which was stumbled upon when the Liapunov plots were
made for low energies. When Figure 6 a) is studied one sees that it has two things to it: One major
shape, the shape that goes from negative to zero as 1/t, the other is the oscillation around the first
shape. Because the Liapunov exponent is calculated by dividing the difference in the logarithms of
the initial and ending distances between the orbits the amplitude will die out with time. To
investigate the shape of the actual difference of the logarithms, the division with the total time was
excluded leading to a different Liapunov exponent: A'=In(s(¢))—In(s,) . This was plotted for the
integration times 10000 and 100000 with energy E = 0.005. The result is presented in Figure 9.

The behavior of the distances between two orbits initially closely separated appears to have self
similarities to it. It can also be seen that for 20000 units of time the trajectories enters regions where
they are nonchaotic. It appears that the fact that the trajectory is chaotic and that chaotic system
have inherent fractal behavior could be used to get some information of when the system will
behave regularly.
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Figure 9: J as a function of time for the energy E=0.005 and the two integration times a) t=10000
and b) 100000
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Appendix

Source Code:

Orbits.py — Renders 2D orbits initial conditions in the Hénon-Helies potentia
Orbits3D.py — Renders 3D orbits for initial conditions in the Hénon-Helies potential
Poincare Map.py — Renders a poincare map for a initial condition

Liapunov.py — Calulates the Liapunov exponents for different points in phase space
Liapunov_Plot.py — Plots two initially close orbits and calculates the Liapinov exponent

Liapunov_Time plotter.py — Plots the Liapunov exponent over time
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